

Article

Fruit leather as a functional snack: a review of antioxidant richness across fruit varieties

Zaskia Nur Azisah

Faculty of Agricultural Technology, Hasanuddin University, Makassar 90245, Indonesia

Abstract

Fruits are part of a category of foods that are prone to damage due to their high moisture content, which makes them susceptible to microbial contamination. Additionally, fruits can spoil as they become overripe. To prolong the shelf life of fruits, one approach is to process them into fruit leather products. This review article aims to serve as a resource and theoretical basis for readers. The methodology involves a literature review, gathering data from various sources. Findings indicate that fruit leather made from different fruits exhibits significant antioxidant activity, offering substantial health benefits. Moreover, combining multiple fruit types in fruit leather can enhance antioxidant activity. Research on fruit leather production, whether involving single fruits, binary combinations, or hydrocolloids, generally demonstrates strong antioxidant activity. Although combining fruits can enhance this activity, a reduction is possible in some instances, potentially due to the degradation of bioactive compounds during processing. In summary, fruit leathers made from fruits like dragon fruit, banana, pineapple, guava, and strawberry show strong potential for development as antioxidant-rich healthy snacks that can provide significant benefits to consumers.

Article History

Received July 6, 2025

Accepted August 28, 2025

Published October 25, 2025

Keywords

Antioxidant,

Fruit, Fruit

Leather

1. Introduction

Fruit is a plant-based food with various nutrients, providing energy for the body while improving health due to its bioactive compounds. Fruits are rich with nutrients such as complex carbohydrates, protein, fat, fiber, minerals, and vitamins. According to 2024 Ministry of Agriculture data, Indonesia's fruit production reached 28,667,649 tons in 2023. The top fruit varieties by production volume include bananas (32.56%), mangoes (11.52%), pineapples (11.01%), citrus (9.8%), and durians (6.46%). The remaining 22 fruit varieties collectively contributed 28.57% of total production (1). Despite substantial output, however, some fruits suffer prolonged spoilage due to distribution losses and excessive ripening process (2).

Fruits are classified into two groups based on the ripening characteristics: climacteric and non-climacteric fruits. Climacteric fruits continue to undergo respiration and ripening after harvest. This process is characterized by increased ethylene production, which triggers changes in color, texture, aroma, flavor, and generally causes the fruit to become softer and sweeter (3). In contrast, non-climacteric fruits do not continue to ripen after harvest and therefore must be harvested at the appropriate maturity stage. Climacteric fruits include bananas, apples, and mangoes, whereas oranges, grapes, and pineapples are categorized as non-climacteric fruits (4). Improper post-harvest handling of both fruit types can negatively impact the quality and quantity. One common consequence is increased transpiration, which leads to moisture loss and subsequently reduces the freshness, texture, and shelf life

* Correspondence: **Zaskia Nur Azisah** zaskianurazisah1@gmail.com

of the fruit (5). Changes due to metabolism can cause food loss that is detrimental to both producers and consumers.

One approach to prevent food loss during storage is to process fruits to healthy food or snack products, such as fruit leather (6). Fruits commonly used for fruit leather production are dragon fruit, mango, papaya, grapes, and strawberries. These fruits generally highly perishable and susceptible to microbial spoilage due to the high moisture content (7). However, it also contain high and diverse levels of antioxidants that help strengthen the immune system by neutralizing free radicals in the body (8). Processing these fruits into fruit leather is considered more advantageous than other methods, as the drying process and the addition of sugar can extend shelf life without significantly reducing antioxidant activity. Moreover, the variety of dried fruit products continues to expand, as it can be made from a wide range of tropical fruits to berries. The potential of dried fruit as a healthy and modern snack is particularly strong, especially among young consumers who are increasingly concerned about health and environmental sustainability. This review article examines the potential of various fruits to be processed into antioxidant-rich dried fruit products as healthy snacks for improving overall health.

2. Materials and Methods

The search for articles (original or review) was performed using the Google Scholar and Scopus electronic databases. The main keywords used were: “fruit leather”; “fruit leather production”; “fruit leather antioxidant”; “antioxidant activity”; “fruit leather antioxidant activity” and “antioxidant activity,” among others. All the included references were manually selected and reviewed by the authors.

3. Results and Discussion

3.1. Fruit Leather

Fruit leather is a processed fruit-based product with simple preparation method and favorable nutritional quality. It typically has a semi-moist to dry texture, depending on the drying method employed (9). Fruits, which are rich in complex nutrients and bioactive compounds, are primarily utilized in pulp form for leather production (10). Fruit leather is characterized by its soft texture, diverse flavor profiles, and high fibre content (11). Typically containing 10–20% moisture, fruit leather is classified as a semi-moist food (12). In addition to fruit, the formulation requires gelling agents (hydrocolloids), sugars, and acidulants. Common hydrocolloids used to improve texture include pectin, gum arabic, carrageenan, and alginate (13).

3.2. Fruits Commonly Utilized for Fruit Leather

3.2.1. Dragon Fruit

Dragon fruit (*Hylocereus* spp.) is a subtropical fruit characterized by its rounded, flower-like shape, vibrant pink to purple rind, and purple flesh speckled with small black seeds (14). It contains a variety of important nutrients, including vitamins B (B1, B2, B3), vitamin C, Vitamin E, carotenoids, flavonoids, phosphorus, iron, and calcium (15). Furthermore, it is rich in antioxidant compounds, dietary fiber, and oligosaccharides. The oligosaccharides present in dragon fruit can serve as prebiotics, functioning as a food source for beneficial probiotic bacteria in the gut (16). Due to the high nutritional value and health-

promoting properties, dragon fruit is commonly processed into various functional food products. Its consumption has been associated with potential health benefits such as reducing the risk of cardiovascular diseases, alleviating diabetes symptoms, and lowering cancer risk (17).

3.2.2. Mango

Mango (*Mangifera indica*) is a climacteric fruit predominantly cultivated in tropical and subtropical regions (18). Its fruit morphology is diverse, typically exhibiting round to elongated shapes, a skin color ranging from green to yellow, and a soft, fleshy pulp (19). Mangoes contain various phytochemical compounds, particularly phenolic compounds and flavonoids. Specific constituents such as gallic acid, chlorogenic acid, ascorbic acid, and carotenoids are strongly associated with its antioxidant capacity (20). Consequently, mango consumption is linked to multiple health benefits, including antidiabetic, antidiarrheal, antihyperlipidemic, and anticancer effects (21).

3.2.3. Pineapple

Pineapple (*Ananas comosus* (L.) Merr.) is a non-climacteric fruit, meaning its ripening process does not continue after harvest (22). Its distinctive morphology features a crown-like shape, a scaly rind, and a sweet-tart flavor with soft flesh (23). Pineapple contains various phytochemicals derived from secondary metabolites, including flavonoids, alkaloids, saponins, and tannins (24). Notably, it is a natural source of the enzyme bromelain, found throughout the fruit (flesh, peel, and core), which is commonly utilized as a meat-tenderizing agent (25). Owing to its rich nutrient and antioxidant profile, pineapple is widely used as a primary ingredient or functional additive in food products. Its consumption is associated with health benefits such as immune support and anticarcinogenic effects, attributed to the ability of its bioactive compounds to neutralize free radicals in the body (26).

3.2.3. Banana

Banana (*Musa* spp.) is a climacteric fruit, which continues to ripen post-harvest and can therefore be harvested prior to full maturity (27). Morphologically, bananas are characterized by an elongated shape, a yellow peel, a sweet taste, and soft flesh (28). They are a source of various bioactive compounds, such as flavonoids, terpenoids, steroids, tannins, and phenolic compounds, in addition to essential minerals including calcium, phosphorus, and iron (29). Owing to these functional and nutritional attributes, bananas are widely processed into value-added food products, such as banana flour. Regular consumption is associated with health benefits, including improved digestive function and antioxidant activity (28).

3.3. Antioxidant

Antioxidants are natural compounds found in various substances and food products that function to inhibit the activity of free radicals (30). In food systems, antioxidants help prevent oxidative reactions that lead to spoilage, color changes, and off flavors. Naturally occurring antioxidants are abundant in pigmented fruits and vegetables, particularly those with red, orange, and purple hues (31). Key antioxidant compounds include carotenoids, thiols, ascorbic acid, and polyphenols (32). Antioxidants are widely incorporated into various

food products due to their health benefits. In the human body, antioxidants play an essential role in neutralizing free radicals and reactive oxygen species (ROS) that can damage cells (33). By reducing oxidative stress, antioxidants help prevent chronic diseases such as cardiovascular disorders, cancer, inflammation, and premature aging, and they also function as anti-inflammatory and anti-aging agents (34).

The DPPH (1,1-diphenyl-2-picrylhydrazyl) assay is a common method for evaluating antioxidant activity, based on the ability of antioxidants to reduce the stable DPPH radical. This activity is often expressed as the IC_{50} value, which represents the concentration of antioxidant required to reduce 50% of DPPH radicals in the system (35). The assay procedure typically involves homogenization of the sample with reagents such as methanol to enhance compound extraction, followed by incubation in darkness due to the light-sensitive nature of DPPH (36,37). Homogenization ensures thorough mixing of the sample with chemical reagents, while the DPPH solution acts as the radical source that antioxidants neutralize (36,38).

3.4. Antioxidant and Bioactive Effect of Fruit Leather

Fruit leather is typically produced from a variety of fruits and vegetables (39). The fruits selected often exhibit bright colors, such as red, purple, yellow, or orange, which are indicative of high antioxidant content (40). The antioxidant activity in different fruits can vary significantly, primarily due to differences in the composition and concentration of bioactive compounds present in each fruit type (41).

Based on the data in Table 1, it can be observed that fruit leather formulations exhibit a wide range of antioxidant activities, influenced by fruit selection, combinations, and processing additives. As a foundational component, the antioxidant properties of individual fruits are significant; for instance, the flavonoids in oranges and apple puree's high phenolic content confer strong anti-aging and antioxidant effects (42–44). Various fruit combinations can significantly affect antioxidant properties of fruit leather. For example, combination of dragon fruit with watermelon increases total phenolic compounds, while banana and papaya enhance vitamin C and antioxidant levels (6,45). However, the impact varies, as seen with the moderate activity of guava-dragon fruit blends due to the higher complexity of guava's antioxidant components compared to dragon fruit (8). Some fruits, like Murano and Malga strawberries, also exhibit a decrease in antioxidant activity after being processed into fruit leather compared to when they are fresh (34.45–35.21 mmol Trolox/100g) (46). Certain additives can also influence antioxidant capacity; for instance, incorporating carrageenan at a 50:50 ratio lowers the antioxidant activity of pineapple-based fruit leather from 68.10% to a moderate level of 27.37% (47). In contrast, combining mango with nata plum yields very strong antioxidant activity, with a correlation value of 40–45% (48). Siamese oranges contribute notable antioxidants through their flavonoids and vitamin C, as these secondary metabolites effectively neutralize free radicals by forming more stable molecules (49). However, the use of hydrocolloids in dragon fruit leather can decrease antioxidant activity by 2.295–7.847% due to the degradation of polyphenols, vitamins, and enzymes (13). In guava-banana fruit leather enriched with kappa carrageenan and gum arabic, the antioxidant activity remains moderate, influenced by banana's naturally low antioxidant capacity (50). Finally, incorporating moringa leaf powder into pineapple fruit leather enhances antioxidant activity, with higher concentrations of moringa resulting in proportionally greater antioxidant potential (51).

Table 1. Antioxidant Activity of Various Types of Fruit

Type of Fruit Leather	Primary Antioxidant Compounds	Antioxidant Activity	Ref.
Orange	Ascorbic acid, flavonoid	87,93 mg /100 g	(42,43)
Mango	Ascorbic acid, β -carotene	147,06 mg /100 g	(42,52)
Dragon fruit + watermelon	Phenolic compounds (tannins, flavonoids, and phenols)	107,39 ppm IC50	(45)
Banana + pawpaw fruit	Flavonoid and total phenol	0,61 – 0,86 mg/ GAE g	(6)
Pure Apple	Phenolic compounds	321 mg GAE/100g	(44)
Pineapple + Dragon fruit peel	Flavonoid, ascorbic acid	73,93%	(53)
Guava + dragon fruit	Vitamin C, flavonoids, and polyphenol compounds	51,15 -94,63 IC50	(8)
Strawberry Murano and Malga	Vitamin C and Flavonoids	20,95 – 21,19 mmol rolox/100 g	(46)
Pineapple Cobs + Carrageenan	Vitamin C and Flavonoids	27,37%	(47)
Mango + Nata Plum	Flavonoids and phenolic compounds	40-45% 160 mg/g	(48)
Siam Orange	Ascorbic acid, flavonoid	74,89%	(49)
Dragon fruit	Polyphenols and vitamins	73,685-82,467%	(13)
Guava + Banana + Carrageenan + Gum arabic	Vitamin C, flavonoids, and polyphenolic compounds	48-57%	(50)
Pineapple + moringa leaves	Flavonoids and ascorbic acid	71,78%	(51)

4. Conclusions

Research on fruit leather production, whether involving single fruits, binary combinations, or hydrocolloids, generally demonstrates strong antioxidant activity. Although combining fruits can enhance this activity, a reduction is possible in some instances, potentially due to the degradation of bioactive compounds during processing. In summary, fruit leathers made from fruits like dragon fruit, banana, pineapple, guava, and strawberry show strong potential for development as antioxidant-rich healthy snacks that can provide significant benefits to consumers.

Acknowledgements

Not applicable.

Author Contributions

Conceptualization, Z.N.A.; methodology, Z.N.A.; validation, Z.N.A.; formal analysis, Z.N.A.; resources, Z.N.A.; data curation, Z.N.A.; and writing Z.N.A.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Data Availability Statement

Available data are presented in the manuscript.

Conflicts of Interest

The author declares no conflict of interest.

References

1. Kementerian Pertanian Republik Indonesia. Statistik Pertanian 2024. Jakarta: Pusat Data dan Sistem Informasi Pertanian Kementerian Pertanian Republik Indonesia; 2024. 420 p.
2. Forlani S, Masiero S, Mizzotti C. Fruit ripening: the role of hormones, cell wall modifications, and their relationship with pathogens. *J Exp Bot* [Internet]. 2019 Jun 1;70(11):2993–3006. Available from: <https://doi.org/10.1093/jxb/erz112>
3. Hewitt S, Dhingra A. Beyond Ethylene: New Insights Regarding the Role of Alternative Oxidase in the Respiratory Climacteric. *Front Plant Sci* [Internet]. 2020;Volume 11. Available from: <https://doi.org/10.3389/fpls.2020.543958>
4. Fukano Y, Tachiki Y. Evolutionary ecology of climacteric and non-climacteric fruits. *Biol Lett* [Internet]. 2021 Sep 15;17(9):20210352. Available from: <https://doi.org/10.1098/rsbl.2021.0352>
5. Gidado MJ, Gunny AAN, Gopinath SCB, Ali A, Wongs-Aree C, Salleh NHM. Challenges of postharvest water loss in fruits: Mechanisms, influencing factors, and effective control strategies – A comprehensive review. *J Agric Food Res.* 2024;17:101249.
6. Ohijeagbon OR, Quadri JA, Adesola MO, Adediwura RA, Bolarinwa IF. Chemical Composition, Physicochemical Properties, and Sensory Attributes of Pawpaw-Banana Mixed Fruit Leather. *IPS J Nutr Food Sci* [Internet]. 3(1 SE-Articles):115–22. Available from: <https://doi.org/10.54117/ijnfs.v3i1.34>
7. Hossain MA, Karim MM, Juthee SA. Postharvest physiological and biochemical alterations in fruits: a review. *Fundam Appl Agric* [Internet]. 2020 Nov 16;5(4 SE-Review Article):453–469. Available from: <https://doi.org/10.5455/faa.22077>
8. Juarsa RP, Ayu DF, Rossi E. Antioxidant Activity, Chemical and Sensory Characteristics of Fruit Leather From Red Guava and Red Dragon Fruit. *J Teknol Has Pertan* [Internet]. 17(1):36–48. Available from: <https://doi.org/10.20961/jthp.v17i1.66261>
9. Srinivas MS, Jain SK, Jain NK, Lakhawat SS, Kumar A, Jain HK. A review on the preparation method of fruit leathers. *Int J Curr Microbiol Appl Sci* [Internet]. 2020;9(5):773–8. Available from: <https://doi.org/10.20546/ijcmas.2020.905.085>
10. Kashyap S, Sharma N. New insights in the production of fruit leather. *Pharma Innov J.* 2023;12(5):1140–51.
11. da Silva Simão R, de Moraes JO, Carciofi BAM, Laurindo JB. Recent Advances in the Production of Fruit Leathers. *Food Eng Rev* [Internet]. 2020;12(1):68–82. Available from: <https://doi.org/10.1007/s12393-019-09200-4>
12. Purwandari U, Mojiono M, Putri NWK, Efendi M, Wijaya A. Storage Stability of Additive-free Salacca sp. Fruit Leather. *Indones J Agric Res* [Internet]. 2019 Feb 19;1(3

SE-Articles):260–8. Available from: <https://doi.org/10.32734/injar.v1i3.495495>

13. Raj GVS, Dash KK. Development of Hydrocolloids Incorporated Dragon Fruit Leather by conductive hydro drying: Characterization and Sensory Evaluation. *Food Hydrocoll Heal.* 2022;2:100086.

14. Abirami K, Swain S, Baskaran V, Venkatesan K, Sakthivel K, Bommayasamy N. Distinguishing three Dragon fruit (*Hylocereus* spp.) species grown in Andaman and Nicobar Islands of India using morphological, biochemical and molecular traits. *Sci Rep* [Internet]. 2021;11(1):2894. Available from: <https://doi.org/10.1038/s41598-021-81682-x>

15. Rohanah, Puspita RR, Wijaya RD, Pratiwi RD, Hareva JA. Buah naga (*hylocereus polyrhizus*) dan buah bit (*beta vulgaris*) terhadap peningkatan kadar hemoglobin. *Holistik J Kesehat* [Internet]. 2023;17(6):465–72. Available from: <https://doi.org/10.33024/hjk.v17i6.11800>

16. Luu TTH, Le TL, Huynh N, Quintela-Alonso P. Dragon fruit: A review of health benefits and nutrients and its sustainable development under climate changes in Vietnam. *Czech J Food Sci* [Internet]. 2021;39(2):71–94. Available from: <https://cjfs.agriculturejournals.cz/artkey/cjf-202102-0003.php>

17. Nishikito DF, Borges AC, Laurindo LF, Otoboni AMMB, Direito R, Goulart RD, et al. Anti-Inflammatory, Antioxidant, and Other Health Effects of Dragon Fruit and Potential Delivery Systems for Its Bioactive Compounds [Internet]. Vol. 15, *Pharmaceutics*. 2023. p. 159. Available from: <https://doi.org/10.3390/pharmaceutics15010159>

18. Akin-Idowu PE, Adebo UG, Egbekunle KO, Olagunju YO, Aderonmu OI, Aduloju AO. Diversity of Mango (*Mangifera Indica* L.) Cultivars Based on Physicochemical, Nutritional, Antioxidant, and Phytochemical Traits in South West Nigeria. *Int J Fruit Sci* [Internet]. 2020 Sep 14;20(sup2):S352–76. Available from: <https://doi.org/10.1080/15538362.2020.1735601>

19. Maldonado-Celis ME, Yahia EM, Bedoya R, Landázuri P, Loango N, Aguillón J, et al. Chemical Composition of Mango (*Mangifera indica* L.) Fruit: Nutritional and Phytochemical Compounds. *Front Plant Sci*. 2019;Volume 10.

20. Kabir Y, Shekhar HU, Sidhu JS. Phytochemical Compounds in Functional Properties of Mangoes. In: *Handbook of Mango Fruit* [Internet]. 2017. p. 237–54. Available from: <https://doi.org/10.1002/9781119014362.ch12>

21. Lauricella M, Emanuele S, Calvaruso G, Giuliano M, D'Anneo A. Multifaceted Health Benefits of *Mangifera indica* L. (Mango): The Inestimable Value of Orchards Recently Planted in Sicilian Rural Areas [Internet]. Vol. 9, *Nutrients*. 2017. p. 525. Available from: <https://doi.org/10.3390/nu9050525>

22. Maduwanthi SDT, Marapana RAUJ. Induced Ripening Agents and Their Effect on Fruit Quality of Banana. *Int J Food Sci* [Internet]. 2019 Jan 1;2019(1):2520179. Available from: <https://doi.org/10.1155/2019/2520179>

23. Spence C. Are pineapples really delicious? The history of the pineapple's taste/flavour and the role of varietal and terroir. *Int J Gastron Food Sci*. 2023;31:100682.

24. Fitri RM, Lubis MS, Dalimunthe GI, Yuniarti R. Phytochemical screening, formulation and physical quality test of nanoserum of pineapple hump extract (*Ananas comosus* (L.) Merr.). *J Pharm Sci*. 2023 Aug 14;6(3 SE-Original Articles):1346–55.

25. Madhusanka GDMP, Thilakarathna RCN. Meat tenderization mechanism and the

impact of plant exogenous proteases: A review. *Arab J Chem.* 2021;14(2):102967.

26. Mappa MR, Kuna MR, Akbar H. Pemanfaatan buah nanas (*Ananas comosus* L.) sebagai antioksidan untuk meningkatkan imunitas tubuh di era pandemi covid 19.

27. Leelaphiwat P, Chonhencob V. Packaging Technologies for Banana and Banana Products. In: *Handbook of Banana Production, Postharvest Science, Processing Technology, and Nutrition* [Internet]. 2020. p. 81–98. Available from: <https://doi.org/10.1002/9781119528265.ch5>

28. Kumari P, Gaur SS, Tiwari RK. Banana and its by-products: A comprehensive review on its nutritional composition and pharmacological benefits. *eFood* [Internet]. 2023 Oct 1;4(5):e110. Available from: <https://doi.org/10.1002/efd2.110>

29. Sidhu JS, Zafar TA. Bioactive compounds in banana fruits and their health benefits. *Food Qual Saf* [Internet]. 2018 Dec 3;2(4):183–8. Available from: <https://doi.org/10.1093/fqsafe/fyy019>

30. Kotha RR, Tareq FS, Yildiz E, Luthria DL. Oxidative Stress and Antioxidants—A Critical Review on In Vitro Antioxidant Assays [Internet]. Vol. 11, *Antioxidants*. 2022. p. 2388. Available from: <https://doi.org/10.3390/antiox11122388>

31. Zehiroglu C, Ozturk Sarikaya SB. The importance of antioxidants and place in today's scientific and technological studies. *J Food Sci Technol* [Internet]. 2019;56(11):4757–74. Available from: <https://doi.org/10.1007/s13197-019-03952-x>

32. Rahaman MM, Hossain R, Herrera-Bravo J, Islam MT, Atolani O, Adeyemi OS, et al. Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: An update. *Food Sci Nutr* [Internet]. 2023 Apr 1;11(4):1657–70. Available from: <https://doi.org/10.1002/fsn3.3217>

33. Sharifi-Rad J, Quispe C, Kumar M, Akram M, Amin M, Iqbal M, et al. Hyssopus Essential Oil: An Update of Its Phytochemistry, Biological Activities, and Safety Profile. *Oxid Med Cell Longev* [Internet]. 2022 Jan 1;2022(1):8442734. Available from: <https://doi.org/10.1155/2022/8442734>

34. Lu W, Shi Y, Wang R, Su D, Tang M, Liu Y, et al. Antioxidant Activity and Healthy Benefits of Natural Pigments in Fruits: A Review [Internet]. Vol. 22, *International Journal of Molecular Sciences*. 2021. p. 4945. Available from: <https://doi.org/10.3390/ijms22094945>

35. Saroyo H, Arifah IAN. Antioxidant activity using DPPH & FRAP method and their correlation with the levels of phenolic and flavonoid compounds from nemba plants (*Azadirachta Indica* A. Juss). *J Nutraceuticals Herb Med* [Internet]. 2021;3(2):10–20. Available from: <https://doi.org/10.23917/jnhm.v3i2.15658>

36. Fatmawati I, Mulyana WO. Uji Aktivitas Antioksidan Ekstrak Etil Asetat Daun Belimbing Wuluh (*Averrhoa bilimbi* L.) dengan Metode DPPH. 2023;12(1):41–9. Available from: <https://doi.org/10.3390/molecules27010050>

37. Wołosiak R, Drużyńska B, Derewiaka D, Piecyk M, Majewska E, Ciecielska M, et al. Verification of the Conditions for Determination of Antioxidant Activity by ABTS and DPPH Assays—A Practical Approach. Vol. 27, *Molecules*. 2022. p. 50.

38. Mesa J, Hinestrosa-Córdoba LI, Barrera C, Seguí L, Betoret E, Betoret N. High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability [Internet]. Vol. 25, *Molecules*. 2020. p. 3305. Available from: <https://doi.org/10.3390/molecules25143305>

39. Bandaru H, Bakshi M. Fruit Leather: Preparation, packaging and its effect on sensorial

and physicochemical properties: A review. *J Pharmacogn Phytochem* [Internet]. 2020;9(6):1699–709. Available from: <https://doi.org/10.22271/phyto.2020.v9.i6y.13192>

40. Cömert ED, Mogol BA, Gökm̄en V. Relationship between color and antioxidant capacity of fruits and vegetables. *Curr Res Food Sci* [Internet]. 2020;2:1–10. Available from: <https://doi.org/10.1016/j.crefs.2019.11.001>

41. Platzer M, Kiese S, Herfellner T, Schweiggert-Weisz U, Miesbauer O, Eisner P. Common Trends and Differences in Antioxidant Activity Analysis of Phenolic Substances Using Single Electron Transfer Based Assays [Internet]. Vol. 26, *Molecules*. 2021. p. 1244. Available from: <https://doi.org/10.3390/molecules26051244>

42. Sukasih E, Widayanti SM. Physicochemical And Sensory Characteristics of Fruit Leather From Various Indonesian Local Fruits. *IOP Conf Ser Earth Environ Sci* [Internet]. 2022;1024(1):12035. Available from: <https://doi.org/10.1088/1755-1315/1024/1/012035>

43. Nobile V, Pisati M, Cestone E, Insolia V, Zaccaria V, Malfa GA. Antioxidant Efficacy of a Standardized Red Orange (*Citrus sinensis* (L.) Osbeck) Extract in Elderly Subjects: A Randomized, Double Blind, Controlled Study [Internet]. Vol. 14, *Nutrients*. 2022. p. 4235. Available from: <https://doi.org/10.3390/nu14204235>

44. BAYKARA Y, ÇETINKAYA S, HAYOĞLU B, HAYOĞLU İ. Production Opportunities Of Apple Leather (PESTİL) From “Starking Delicious” and “Granny Smith” Apple Varieties. *Int J Curr Nat Adv Phytochem*. 2022;2(1):13–21.

45. Ayustaningwano F, Ayu AM, Afifah DN, Anjani G, Nuryanto N, Wijayanti HS, et al. Physicochemical and sensory quality of high antioxidant fruit leather of red dragon fruit and watermelon rind enriched with seaweed. *Discov Food* [Internet]. 2024;4(1):92. Available from: <https://doi.org/10.1007/s44187-024-00169-6>

46. Nour V. Physico-chemical, antioxidant and sensorial properties of fruit leathers made from “Malga” and “Murano” strawberry cultivars. *Ukr Food J* [Internet]. 2021;10(4):736–48. Available from: <https://doi.org/10.24263/2304>

47. Sarofa U, Pertiwi AP. Utilization of pineapple cobs and peels for fruit leather processing. *Technium* [Internet]. 2023;16. Available from: <https://doi.org/10.47577/technium.v16i.10017>

48. Mphaphuli T, Manhivi VE, Slabbert R, Sultanbawa Y, Sivakumar D. Enrichment of Mango Fruit Leathers with Natal Plum (*Carissa macrocarpa*) Improves Their Phytochemical Content and Antioxidant Properties [Internet]. Vol. 9, *Foods*. 2020. p. 431. Available from: <https://doi.org/10.3390/foods9040431>

49. Aryawan KDD, Putra IGAM, Sadyasmara CAB, Dewi IGABM, Sekarhita PC. Sensory Properties and Antioxidant Activity of Siamese Orange (*Citrus nobilis* L.) Fruit Leather. *SEAS (Sustainable Environ Agric Sci)*. 2024;8(2):96–102.

50. Kurniadi M, Parnanto NHR, Saputri MW, Sari AM, Indrianingsih AW, Herawati ERN, et al. The effect of kappa-carrageenan and gum Arabic on the production of guava-banana fruit leather. *J Food Sci Technol* [Internet]. 2022;59(11):4415–26. Available from: <https://doi.org/10.1007/s13197-022-05521-1>

51. Purnomo RR, Tari AI, Asmoro NW. Variasi Penambahan Serbuk Daun Kelor (*Moringa Oleifera*) Terhadap Karakteristik Kimiawi Fruit Leather Nanas (*Ananas Comosus* (L.) Merr.). *J Ilmu Pertan*. 2020;4(1):60–8.

52. Yahia EM, Ornelas-Paz J de J, Brecht JK, García-Solís P, Maldonado Celis ME. The

contribution of mango fruit (*Mangifera indica* L.) to human nutrition and health. *Arab J Chem* [Internet]. 2023;16(7):104860. Available from: <https://doi.org/10.1016/j.arabjc.2023.104860>

53. Pulungan MZN, Miftahul R DU, Luketsi WP. Pembuatan Fruit Leather Buah Nanas (*Ananas comosus* L) Subgrade Dengan Penambahan Kulit Buah Naga Merah (*Hylocereus costaricensis*). *Agroindustrial Technol J* [Internet]. 2021 Jan 7;4(2 SE-Articles):182–96. Available from: <https://doi.org/10.21111/atj.v4i2.4035>