Mathematical Modelling of Drying Characteristics of White Pepper in Spouted Bed Dryer with Microwave Preheating Treatment

##plugins.themes.academic_pro.article.main##

Andi Muhammad Akram Mukhlis
Nurul Fadhilah

Abstract

To study the effect of drying on white pepper seeds, a thorough knowledge of the drying kinetics is required. The drying kinetics of a material can be explained using a mathematical model which is usually used to estimate the drying time of the material. This study aims to determine the appropriate drying mathematical model for drying white pepper spouted beds with microwave preheating treatment. The equipment used in this study was a spouted bed dryer designed for laboratory scale. The material used in this study was wet white pepper seeds obtained from smallholder plantations in Enrekang district, South Sulawesi province with an age of approximately 8-9 months after flowering. The white pepper was directly put into the spouted bed drying room for non-preheating treatment, while for the preheating treatment the pepper was stored in a container then put in a microwave oven for 2 minutes. During the drying process, several parameters for drying analysis are measured. There are seven different mathematical drying models evaluated. In determining the most appropriate mathematical model, model validation is required through statistical methods. The statistical methods used were correlation analysis, reduced chi-square (χ2) test, and root means square error (RMSE) analysis. Based on the analysis, the Weibull model fulfills the criteria to be the best model with the correlation coefficient r (0.99990) being the highest and the χ2 (0.00001) and RMSE (0.00385) values ​​being the lowest. Thus, the Weibull model can be used to predict drying time and moisture content.

##plugins.themes.academic_pro.article.details##

How to Cite
Mukhlis, A. M. A., & Fadhilah, N. . (2021). Mathematical Modelling of Drying Characteristics of White Pepper in Spouted Bed Dryer with Microwave Preheating Treatment. Jurnal Agritechno, 14(1), 8–17. https://doi.org/10.20956/at.v14i1.412

References

  1. Amarasinghe, B. M. W. P. K., Aberathna, A. J. M. L. M., & Aberathna, K. K. P. P. (2018). Kinetics and mathematical modeling of microwave drying of Sri Lankan black pepper (piper nigrum). International Journal of Environmental & Agriculture Research (IJOEAR), 4(2), 6-13.
  2. Arslan, D., & Özcan, M. M. (2010). Study the effect of sun, oven and microwave drying on quality of onion slices. LWT-Food Science and Technology, 43(7), 1121-1127.
  3. Chielle, D. P., Bertuol, D. A., Meili, L., Tanabe, E. H., & Dotto, G. L. (2016). Spouted bed drying of papaya seeds for oil production. LWT - Food Science and Technology, 65, 852-860.
  4. Emam, O. A., Farag, S. A., & Aziz, N. H. (1995). Comparative effects of gamma and microwave irradiation on the quality of black pepper. Zeitschrift für Lebensmittel - Untersuchung und Forschung, 201(6), 557-561.
  5. Erbay, Z., & Icier, F. (2010). A review of thin layer drying of foods: theory, modeling, and experimental results. Critical reviews in food science and nutrition, 50(5), 441-464.
  6. Fellows, P. J. (2009). Food processing technology: principles and practice. 3rd ed. Elsevier.
  7. Gazor, H. R., & Mohsenimanesh, A. (2010). Modelling the drying kinetics of canola in fluidised bed dryer. Czech Journal of Food Sciences, 28(6), 531-537.
  8. Hartulistiyoso, E., Purwanto, Y. A., & Mukhlis, A. M. A. (2019). Spouted Bed Drying of White Pepper (Piper nigrum L.) with Microwave Preheating Treatment. In IOP Conference Series: Materials Science and Engineering (Vol. 557, No. 1, p. 012045). IOP Publishing.
  9. Hashemi, G., Mowla, D., & Kazemeini, M. (2009). Moisture diffusivity and shrinkage of broad beans during bulk drying in an inert medium fluidized bed dryer assisted by dielectric heating. Journal of Food Engineering, 92(3), 331-338.
  10. Jayatunga, G. K., & Amarasinghe, B. M. W. P. K. (2019). Drying kinetics, quality and moisture diffusivity of spouted bed dried Sri Lankan black pepper. Journal of food engineering, 263, 38-45.
  11. Jittanit, W., Srzednicki, G., & Driscoll, R. H. (2013). Comparison between fluidized bed and spouted bed drying for seeds. Drying Technology, 31(1), 52-56.
  12. Kahyaoglu, L. N., Sahin, S., & Sumnu, G. (2012). Spouted bed and microwave-assisted spouted bed drying of parboiled wheat. Food and Bioproducts Processing, 90(2), 301-308.
  13. Keneni, Y. G., Hvoslef-Eide, A. T., & Marchetti, J. M. (2019). Mathematical modelling of the drying kinetics of Jatropha curcas L. seeds. Industrial crops and products, 132, 12-20.
  14. Magalhaes, A., & Pinho, C. (2008). Spouted bed drying of cork stoppers. Chemical Engineering and Processing: Process Intensification, 47(12), 2395-2401.
  15. Markowski, M., Białobrzewski, I., & Modrzewska, A. (2010). Kinetics of spouted-bed drying of barley: Diffusi-vities for sphere and ellipsoid. Journal of Food Engineering, 96(3), 380-387.
  16. Mihindukulasuriya, S. D., & Jayasuriya, H. P. (2013). Mathematical modelling of drying characteristics of chilli in hot air oven and fluidized bed dryers. Agricultural Engineering International: CIGR Journal, 15(1), 154-166.
  17. Mujumdar, A.S. (2015). Principles, classification, and selection of dryers. Handbook of industrial drying, 4ed. 4 28.
  18. Olazar, M., San Jose, M. J., Aguayo, A. T., Arandes, J. M., & Bilbao, J. (1992). Stable operation conditions for gas-solid contact regimes in conical spouted beds. Industrial & Engineering Chemistry Research, 31(7), 1784-1792.
  19. Olazar M, San José MJ, Bilbao J. (2011). Conical spouted beds. Spouted and Spout-fluid Beds: Fundamentals and Applications. Cambridge (GB): Cambridge Univ Pr. 82-127
  20. Omolola, A. O., Kapila, P. F., & Silungwe, H. M. (2019). Mathematical modeling of drying characteristics of Jew’s mallow (Corchorus olitorius) leaves. Information processing in agriculture, 6(1), 109-115.
  21. Perea-Flores, M. J., Garibay-Febles, V., Chanona-Perez, J. J., Calderon-Dominguez, G., Mendez-Mendez, J. V., Palacios-González, E., & Gutierrez-Lopez, G. F. (2012). Mathematical modelling of castor oil seeds (Ricinus communis) drying kinetics in fluidized bed at high temperatures. Industrial Crops and Products, 38, 64-71.
  22. Plessi, M., Bertelli, D., & Miglietta, F. (2002). Effect of microwaves on volatile compounds in white and black pepper. LWT-Food Science and Technology, 35(3), 260-264.
  23. Promvonge, P., Boonloi, A., Pimsarn, M., & Thianpong, C. (2011). Drying characteristics of peppercorns in a rectangular fluidized-bed with triangular wavy walls. International Communica-tions in Heat and Mass Transfer, 38(9), 1239-1246.
  24. Roberts, J. S., Kidd, D. R., & Padilla-Zakour, O. (2008). Drying kinetics of grape seeds. Journal of Food Engineering, 89(4), 460-465.
  25. Rosa, D. P., Cantú-Lozano, D., Luna-Solano, G., Polachini, T. C., & Telis-Romero, J. (2015). Mathematical modeling of orange seed drying kinetics. Ciência e Agrotecnologia, 39(3), 291-300.
  26. Schiffmann, R. F. (2006). Microwave and dielectric drying. Handbook of industrial drying, 3ed, 345-372.
  27. Toğrul, İ. T., & Pehlivan, D. (2003). Modelling of drying kinetics of single apricot. Journal of Food Engineering, 58(1), 23-32.
  28. Tulliza, I. S. & Mursalim, M. (2011). Pengeringan Lapis Tipis Biji Jagung dengan Alat Pengering Sistem Fluidasi. Jurnal Keteknikan Pertanian, 25(1), 69-72.
  29. Usmiati, S., & Nurdjannah, N. (2006). Pengaruh lama perendaman dan cara pengeringan terhadap mutu lada putih. Journal of Agroindustrial Technology, 16(3).
  30. Wang, Z., Sun, J., Chen, F., Liao, X., & Hu, X. (2007). Mathematical modelling on thin layer microwave drying of apple pomace with and without hot air pre-drying. Journal of Food Engineering, 80(2), 536-544.
  31. Yang, Z., Zhu, E., & Zhu, Z. (2015). Water desorption isotherm and drying characteristics of green soybean. Journal of Stored Products Research, 60, 25-30.
  32. Zhang, Q. A., Song, Y., Wang, X., Zhao, W. Q., & Fan, X. H. (2016). Mathematical modeling of debittered apricot (Prunus armeniaca L.) kernels during thin-layer drying. CyTA-Journal of Food, 14(4), 509 - 517.