KINETIKA PENGERINGAN CABE JAMU MENGGUNAKAN PENGERING EFEK RUMAH KACA BERBANTU PENYIMPAN PANAS

##plugins.themes.academic_pro.article.main##

Mohammad Fuad Fauzul Mu'tamar
Arief Firmansyah
Dhefanie Firmansyah

Abstract

Solar greenhouse drying could become an alternative drying technique that is affordable, applicable, and safe. However, it is solar-dependent. Thus, it requires a system that supplieses heat during the absence of solar energ; using This research aims to determine the drying kinetics of cabe jamu using a solar greenhouse dryer assisted by heat storage. The object of this research was cabe jamu, which is categorized as a predominant Madura agriculture product. The drying was held for 3 days, and the observation parameters were length, diameter, and mass during drying. Material that is used as heat storage was black shinning Lumajang sand. During the the drying process, ambient temperature, solar greenhouse temperature, and sand temperature were read every 1 h. The result showed that Midilli and Kucuk model have a good-fitting performance to portray the drying kinetics of cabe jamu assisted by and without heat storage. The result also confirms that application of heat storage to solar greenhouse dryer did not shorten drying time; otherwise, increase the percentages of product volume shrinkage.

##plugins.themes.academic_pro.article.details##

How to Cite
Mu’tamar, M. F. F., Firmansyah, A., & Firmansyah, D. (2024). KINETIKA PENGERINGAN CABE JAMU MENGGUNAKAN PENGERING EFEK RUMAH KACA BERBANTU PENYIMPAN PANAS. Jurnal Agritechno, 17(1), 83–92. https://doi.org/10.70124/at.v17i1.1246

References

  1. Astawa, K., & Suarnadwipa, N. (2016). Pengaruh variasi jenis pasir sebagai media penyimpan panas terhadap performansi kolektor suya tubular dengan pipa penyerap disusun secara seri. Jurnal Energi Dan Manufaktur, 9(2), 161–165. http://ojs.unud.ac.id/index.php/jem:Tel./Fax.:087863052230/62361703321
  2. Ayyappan, S., Mayilsamy, K., & Sreenarayanan, V. V. (2016). Performance improvement studies in a solar greenhouse drier using sensible heat storage materials. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 52(3), 459–467. https://doi.org/10.1007/s00231-015-1568-5
  3. Azaizia, Z., Kooli, S., Hamdi, I., Elkhal, W., & Guizani, A. A. (2020). Experimental study of a new mixed mode solar greenhouse drying system with and without thermal energy storage for pepper. Renewable Energy, 145, 1972–1984. https://doi.org/10.1016/j.renene.2019.07.055
  4. Duque-Dussán, E., Sanz-Uribe, J. R., & Banout, J. (2023). Design and evaluation of a hybrid solar dryer for postharvesting processing of parchment coffee. Renewable Energy, 215. https://doi.org/10.1016/j.renene.2023.118961
  5. Huang, D., Men, K., Tang, X., Li, W., & Sherif, S. A. (2021). Microwave intermittent drying characteristics of camellia oleifera seeds. Journal of Food Process Engineering, 44(1). https://doi.org/10.1111/jfpe.13608
  6. Ida, N., Yosika, W., Hawa, L. C., Hendrawan, Y., Keteknikan, J. T., Teknologi, P.-F., Brawijaya, P.-U., Veteran -Malang, J., & Korespondensi, P. (2020). Characteristics and Drying Rate of Cabya (Piper retrofractum Vahl.) with Natural Drying Method (Open Sun Drying). Jurnal Teknologi Pertanian, 21(3), 165–174.
  7. Irfan, A. M., Rasyid, A. R., & Lestari, N. (2020). Unjuk Kerja Pengering Tenaga Surya Tipe Efek Rumah Kaca Untuk Pengeringan Cabai Dengan Perlakuan Low Temperature Long Time Blanching. Jurnal Rona Teknik Pertanian , 13(2), 42–58.
  8. Jiang, D., Li, C., Lin, Z., Wu, Y., Pei, H., Zielinska, M., & Xiao, H. (2023). Experimental and numerical study on the shrinkage-deformation of carrot slices during hot air drying. International Journal Agricultural and Biological Engineering , 16(1), 260–272. https://doi.org/10.25165/j.ijabe.20231601.6736
  9. Koehuana, V. A., Goab, K. Y., & Jafri, M. (2022). Pengujian Rumah Pengering Daun Kelor dengan Efek Rumah Kaca (Solar Dryer) Melalui Variasi Kecepatan Udara. JMPM (Jurnal Material Dan Proses Manufaktur), 5(2), 68–81. https://doi.org/10.18196/jmpm.v5i2.13899
  10. Mayor, L., & Sereno, A. M. (2004). Modelling shrinkage during convective drying of food materials: A review. Journal of Food Engineering, 61(3), 373–386. https://doi.org/10.1016/S0260-8774(03)00144-4
  11. Mursalin, M., Hariyadi, P., & Soekarto, S. T. (2021). PENGARUH LUAS PERMUKAAN BONGKAHAN KAPUR API TERHADAP LAJU PENGERINGAN FILLET IKAN PATIN. Jurnal Bio-Geo Material Dan Energi, 1(1), 46–52.
  12. Nabnean, S., & Nimnuan, P. (2020). Experimental performance of direct forced convection household solar dryer for drying banana. Case Studies in Thermal Engineering, 22. https://doi.org/10.1016/j.csite.2020.100787
  13. Srinivasan, G., Rabha, D. K., & Muthukumar, P. (2021). A review on solar dryers integrated with thermal energy storage units for drying agricultural and food products. Solar Energy, 229, 22–38. https://doi.org/10.1016/j.solener.2021.07.075
  14. Winarno, J., Sri, D., & Hutomo, G. (2023). Investigasi Kinerja Energi dan Eksergi Pengering Surya Konveksi Alamiah Terdistribusi dengan Media Penyimpan Panas Pasir. In Jurnal Rekayasa Mesin (Vol. 18, Issue 2). https://jurnal.polines.ac.id/index.php/rekayasa
  15. Yao, Y., Pang, Y. X., Manickam, S., Lester, E., Wu, T., & Pang, C. H. (2022). A review study on recent advances in solar drying: Mechanisms, challenges and perspectives. In Solar Energy Materials and Solar Cells (Vol. 248). Elsevier B.V. https://doi.org/10.1016/j.solmat.2022.111979
  16. Zamharir, Z., Sukmawaty, S., & Priyati, A. (2016). Analisis Pemanfaatan Energi Panas pada Pengeringan Bawang Merah (Allium ascalonicum L.) dengan menggunakan Alat Pengering Efek Rumah Kaca (ERK). Jurnal Ilmiah Rekayasa Pertanian Dan Biosistem , 4(2), 264–274.