KOMPARASI NILAI INDEKS FAKTOR PANJANG DAN KEMIRINGAN LERENG PADA BEBERAPA DATA DIGITAL ELEVATION MODEL RESOLUSI MENENGAH

##plugins.themes.academic_pro.article.main##

Arif Faisol
Mashudi Mashudi
Samsul Bachri

Abstract

Several erosion prediction models use slope length and slope steepness factors (LS) as one of the parameters. Some researchers have developed algorithms to analyze LS based on Digital Elevation Model (DEM) data. This study aims to compare the LS based on the medium resolution of DEM data, i.e Space Shuttle Radar Topography Mission (SRTM), ASTER Global DEM, Jaxa's Global ALOS 3D World, and Copernicus DEM at 2 (two) watersheds in Manokwari, West Papua. The LS was calculated using the Desmet - Govers method. The research showed that LS analyzed using Copernicus DEM provided higher values than LS generated from SRTM DEM, ASTER Global DEM, and Jaxa's Global ALOS 3D World, meanwhile, LS generated from ASTER Global DEM data provided lower values. Furthermore, the LS value from the analysis of the Desmet - Govers method and the SRTM, ASTER Global DEM, Jaxa's Global ALOS 3D World, and Copernicus DEM have significant differences with weak to moderate correlation based on the F test and Pearson correlation test

##plugins.themes.academic_pro.article.details##

How to Cite
Faisol, A., Mashudi, M., & Bachri, S. (2024). KOMPARASI NILAI INDEKS FAKTOR PANJANG DAN KEMIRINGAN LERENG PADA BEBERAPA DATA DIGITAL ELEVATION MODEL RESOLUSI MENENGAH. Jurnal Agritechno, 18–27. Retrieved from https://agritech.unhas.ac.id/ojs/index.php/at/article/view/1284

References

  1. Abrams, M., & Crippen, R. (2019). ASTER Global DEM (Digital Elevation Mode) - Quick Guide for V3. In California Institute of Technology (Vol. 3).
  2. Badan Informasi Geospasial. (2018). DEMNAS : Seamless Digital Elevation Model (DEM) dan Batimetri Nasional. Retrieved from https://tanahair.indonesia.go.id/demnas/#/
  3. Chidi, C. L., Zhao, W., Chaudhary, S., Xiong, D., & Wu, Y. (2021). Sensitivity assessment of spatial resolution difference in dem for soil erosion estimation based on uav observations: An experiment on agriculture terraces in the middle hill of nepal. ISPRS International Journal of Geo-Information, 10(1), 1–17. https://doi.org/10.3390/ijgi10010028
  4. Desmet, P. J. J., & Govers, G. (1996). A GIS Procedure for Automatically Calculating the USLE LS Factor on Topographically Complex Landscape Units. Journal of Soil and Water Conservation, 51(5), 427–433.
  5. Dong, L., Ge, C., Zhang, H., Liu, Z., Yang, Q., Jin, B., … Geissen, V. (2022). An optimized method for extracting slope length in RUSLE from raster digital elevation. Catena, 209(P2), 105818. https://doi.org/10.1016/j.catena.2021.105818
  6. European Space Agency. (2024). Level-1 Ground Range Detected. Retrieved March 23, 2024, from https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar/resolutions/level-1-ground-range-detected
  7. Flanagan, D. C. (1995). USDA - Water Erosion Prediction Project : Hillslope Profile and Watershed Model Documentation. Indiana.
  8. Geisser, S. (2006). Modes of Parametric Statistical Inference (1st ed.). New Jersey: Wiley - Interscience.
  9. Hickey, R., Smith, A., & Jankowski, P. (1994). Slope length calculations from a DEM within ARC/INFO grid. Computers, Environment and Urban Systems, 18(5), 365–380. https://doi.org/10.1016/0198-9715(94)90017-5
  10. Hui-ping, Z. H., Nong, Y., Shao-Feng, L. S., & Yue-qiao, Z. H. (2006). Recent progress in the DEM-based tectonogeomorphic study. Geological Bulletin of China, 25(6), 1–10.
  11. Jackson, S. L. (2009). Research Methods and Statistics : A Critical Thinking Approach (3rd ed.). Belmont: Wadsworth. Retrieved from www.ichapters.com
  12. JAXA EORC. (2020). ALOS Global Digital Surface Model (DSM). In Earth Observation Research Center Japan Aerospace Exploration Agency (JAXA EORC). Retrieved from https://www.eorc.jaxa.jp/ALOS/en/aw3d30/aw3d30v31_product_e_a.pdf
  13. Jiang, J., Luo, M., Bai, L., Sang, Y., Yang, S., & Yang, H. (2024). Study of slope length (L) extraction based on slope streamline and the comparison of method results. In Scientific Reports (Vol. 14). Nature Publishing Group UK. https://doi.org/10.1038/s41598-024-56696-w
  14. Kong, F. (2020). Comparison of Slope Length Factor Extraction in Hillslope Soil Erosion Model with Different DEM Resolution. Agricultural Biotechnology, 9(1), 89–95.
  15. Kumar, S., & Kushwaha, S. P. . (2013). Title : Modeling Soil Erosion Risk based on RUSLE-3D using GIS in a Shivalik sub-watershed. Journal of Earth System Science, 122(2), 389–398. https://doi.org/10.1007/s12040-013-0276-0
  16. Michalopoulou, M., Depountis, N., Nikolakopoulos, K., & Boumpoulis, V. (2022). The Significance of Digital Elevation Models in the Calculation of LS Factor and Soil Erosion. Land, 11, 36 p. https://doi.org/https:// doi.org/10.3390/land11091592
  17. Moore, I. D., & Wilson, J. P. (1992). Length-slope Factors for the Revised Universal Soil Loss Equation: Simplified Method of Estimation. Journal of Soil & Water Conservation, 47(5), 423–428.
  18. NASA-JPL. (2015). The Shuttle Radar Topography Mission (SRTM) Collection User Guide. Retrieved from https://lpdaac.usgs.gov/documents/179/SRTM_User_Guide_V3.pdf
  19. Oliveira, P. T. S., Rodrigues, D. B. B., Sobrinho, T. A., Panachuki, E., & Wendland, E. (2013). Acta Scientiarum Use of SRTM data to calculate the ( R ) USLE topographic factor. Acta Scientiarum, 35(3), 507–513. https://doi.org/10.4025/actascitechnol.v35i3.15792
  20. Perović, V., Životić, L., Kadović, R., Dordević, A., Jaramaz, D., Mrvić, V., & Todorović, M. (2013). Spatial Modelling of Soil Erosion Potential in a Mountainous Watershed of South-eastern Serbia. Environmental Earth Sciences, 68(1), 115–128. https://doi.org/10.1007/s12665-012-1720-1
  21. Raj, A. R., George, J., S, R., Kumar, S., & Agrawal, S. (2018). Effect of DEM Resolution on LS Factor Computation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 315–321.
  22. Raj, R., George, J., Kumar, S., & Agarwal, S. (2018). Effect of DEM resolution on LS factor computation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, (November), 315–321. https://doi.org/10.5194/isprs-archives-XLII-5-315-2018
  23. Randolph, K. A., & Myers, L. L. (2013). Basic Statistics in Multivariate Analysis (1st ed.; T. Tripodi, Ed.). New York: Oxford University Press.
  24. Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. . (1997). Predicting Soil Erosion by Water: A Guide to Conservation Planing With the Revised Universal Soil Loss Equation (RUSLE) (1st ed.). United States Department of Agriculture.
  25. Saygın, S. D., Ozcan, A. U., Basaran, M., Timur, O. B., Dolarslan, M., Yılman, F. E., & Erpul, G. (2013). The Combined RUSLE/SDR Approach Integrated with GIS and Geostatistics to Estimate Annual Sediment Flux Rates in the Semi-arid Catchment, Turkey. Environmental Earth Sciences, 71(4), 1605–1618. https://doi.org/10.1007/s12665-013-2565-y
  26. Singh, Y. K. (2006). Fundamental of Reserach Methodology and Statistics (1st ed.). New Delhi: New Age International Publisher.
  27. The European Space Agency. (2022). Copernicus Digital Elevation Model Handbook. In GSICS Quarterly.
  28. USDA-ARS. (2020). Wind Erosion Prediction System (WEPS): Technical Documentation. USDA Agriculture Handbook 727. Fort Collins. Retrieved from https://www.ars.usda.gov/services/software/download.htm?softwareid=415.
  29. Wackerly, D. D., Mendenhall, W., & Scheaffer, R. L. (2008). Mathematical statistics with applications. In Mathematical Statistics With Applications (7th ed.). Belmont: Thomson Brooks/Cole. https://doi.org/10.1201/9781315275864
  30. Wischmeier, W. H., & Smith, D. D. (1978). Predicting Rainfall Erosion Losses : a Guide to Conservation Planning. In Agriculture Handbook Number 537 (1st ed., Vol. 1). Washington D.C.: United States Department of Agriculture.
  31. Yao, C., McCool, D. K., & Elliot, W. J. (2010). DEM resolution effects on hillslope length and steepness estimates for erosion modeling. American Society of Agricultural and Biological Engineers Annual International Meeting 2010, ASABE 2010, 7(January 2010), 6014–6033. https://doi.org/10.13031/2013.32045
  32. Yoshino, K., & Ishioka, Y. (2005). Guidelines for Soil Conservation Towards Integrated Basin Management for Sustainable Development: A New Approach Based on the Assessment of Soil Loss Risk using Remote Sensing and GIS. Paddy and Water Environment, 3(4), 235–247. https://doi.org/10.1007/s10333-005-0023-5
  33. Životić, L., Perović, V., Jaramaz, D., Dordević, A., Petrović, R., & Todorović, M. (2012). Application of USLE, GIS, and Remote Sensing in the Assessment of Soil Erosion Rates in Southeastern Serbia. Polish Journal of Environmental Studies, 21(6), 1929–1935