PREDIKSI PERUBAHAN PENGGUNAAN LAHAN SAWAH DI WILAYAH HILIR DAS BILA TAHUN 2036

##plugins.themes.academic_pro.article.main##

arnur hidayat
Reza Asra
Nining Triani Thamrin
Husnul Mubarak

Abstract

The use of rice fields as non-agricultural land if allowed to continue, it is not impossible that agricultural land will become increasingly narrow, agricultural production will decline in the long term and Indonesia will experience a food deficit, so it is important to predict rice fields so that it becomes a consideration for the government and other related agencies in determining policies regarding land use planning in an area to support land resource management and sustainable regional development planning. This study aims to analyze the driving factors of rice field changes based on Geographic Information Systems (GIS) and to determine the projection of rice field changes using the Ca-Markov 2036 model. This study is based on Geographic Information Systems (GIS), a system designed to capture, store, manipulate, analyze, organize and display all types of geographic data. The process of processing driving factors data starts from the weighting classification process, fuzzy analysis to produce output that is a reference for the CA-Markov process. Ca-Markov Method Using Idrisi Selva. from the results of the study of Land Use Changes in 2024-2036 in the downstream area of ​​the Bila watershed, it shows that the land changes that increased on the land were Rice Fields covering an area of ​​975,247 ha, Plantations covering an area of ​​594,523, Settlements covering an area of ​​1641,144 ha, while the land that experienced a significant decrease in area in land use in the downstream area of ​​the Bila watershed was Forest covering an area of ​​125,623 ha, Vacant Land covering an area of ​​103,991 ha, Tegalang Fields covering an area of ​​1809,481 ha, Shrubs covering an area of ​​594,523 ha.

##plugins.themes.academic_pro.article.details##

How to Cite
hidayat, arnur, Asra, R., Thamrin, N. T., & Mubarak, H. (2024). PREDIKSI PERUBAHAN PENGGUNAAN LAHAN SAWAH DI WILAYAH HILIR DAS BILA TAHUN 2036. Jurnal Agritechno, 205–216. Retrieved from https://agritech.unhas.ac.id/ojs/index.php/at/article/view/1423

References

  1. Achmadi, P. N., Dimyati, M., Manesa, M. D. M., & Rakuasa, H. (2023). Model Perubahan Tutupan Lahan Berbasis Ca-Markov: Studi Kasus Kecamatan Ternate Utara, Kota Ternate. Jurnal Tanah Dan Sumberdaya Lahan, 10(2), 451–460. https://doi.org/10.21776/ub.jtsl.2023.010.2.28
  2. Akbar F and Supriatna. 2019. Land cover modelling of Pelabuhanratu City in 2032 using celullar automata-markov chain method [Proceeding]. IOP Conference Series Earth and Environmental Science 311.
  3. Astuti, F. A., & Lukito, H. (2020). Perubahan penggunaan lahan di kawasan keamanan dan ketahanan pangan di kabupaten Sleman. Jurnal Geografi: Media Informasi Pengembangan Dan Profesi Kegeografian, 17(1), 1–6. https://doi.org/10.15294/jg.v17i1.21327
  4. Deng, J.S., K. Wang, Y. Hong, and J.G. Qi., 2009. Spatio temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landscape and Urban Planning. 92, 187-198.
  5. Hapsary, M. S. A., Subiyanto, S., & Firdaus, H. S. (2021). Analisis prediksi perubahan penggunaan lahan dengan pendekatan artificial neural networ dan regresi logistik di kota Balikpapan. Jurnal Geodesi UNDIP, 10(2), 88–97. https://ejournal3.undip.ac.id/index.php/geodesi/article/view/30637
  6. Jiang, D., Huang, Y., Zhuang, D., Zhu, Y., Xu, X., & Ren, H., 2012. A Simple Semi-Automatic Approach for Land Cover Classification from Multispectral Remote Sensing Imagery. PloS one, 7(9), e45889.
  7. Kubangun, S.H., Oteng, H., dan Komarsa, G., 2016. Model Perubahan Penutupan/Penggunaan Lahan Untuk Identifikasi Lahan Kritis Di Kabupaten Bogor, Kabupaten Cianjur, Dan Kabupaten Sukabumi. Majalah Ilmiah Globë, 18 (1), 21-32.
  8. Nugroho, R. A., & Handayani, H. H. (2021). Prediksi Perubahan Tutupan Lahan Menggunakan Metode Markov Chain dan Citra Satelit Penginderaan Jauh (Studi Kasus: Kota Surabaya). Jurnal Teknik ITS, 9(2). https://doi.org/10.12962/j23373539.v9i2.54473
  9. Permatasari, R. (2017). Effect of Changes in Land Use on Watershed Hydrological Regimes (Case Study: Komering Watershed). Jurnal Teknik Sipil, 24(1), 91–98. https://doi.org/10.5614/jts.2017.24.1.11
  10. Putri I M G, Supriatna, Koestoer R H and Siwi S E 2019 IOP Conf. Series: Earth and Environmental Science (United Kingdom: IOP Publishing Ltd) 311 012073
  11. Peter A, Zachariah B, Damuut LP and Abdulkadir S. 2021. Efficient traffic control system using fuzzy logic with priority [Proceeding]. International Conference on Information and Communication Technology and Applications 1350: 660–674.
  12. Staddal, I., Haridjaja, O., & Hidayat, Y. (2017). Analisis debit aliran sungai DAS Bila, Sulawesi Selatan. Jurnal Sumber Daya Air, 12(2), 117–130. https://doi.org/10.32679/jsda.v12i2.56
  13. Trihendradi, Cornelius. 2011. Step by Step SPSS 18 Analisis Data Statistik. Yogyakarta.
  14. Trisasongko, B.H., D.R. Panuju, L.S. Iman, Harimurti, A.F. Ramly, V. Anjani, dan H. Subroto., 2009. Analisis Dinamika Konversi Lahan di Sekitar Jalur Tol Cikampek. Publikasi Teknis DATIN. Kementrian Negara Lingkungan Hidup, Jakarta.
  15. Wahyudi, M. E., Munibah, K., & Widiatmaka, W. (2019). Perubahan penggunaan lahan dan kebutuhan lahan permukiman di kotaBontang, Kalimantan Timur. Tataloka, 21(2), 267. https://doi.org/10.14710/tataloka.21.2.267-284

Most read articles by the same author(s)