Aerator system of ventury nozzle in hydroponic for cultivating lettuce plants
Article Sidebar
Many lettuce plants are grown hydroponically because they produce better quality.The problem with hydroponic systems is that the plant roots are submerged in the nutrient solution, therefore it will rot easily due to lack of oxygen in the root area. To overcome this problem, hydroponics with microbubble technology is applied. This research aims to determine the performance of the ventury dual nozzle in producing microbubbles and its effect on the growth and productivity of lettuce plants. This research was carried out by assembling a hydroponic system equipped with a ventury model aerator, measuring bubble characteristics using the image processing method and analyzing plant parameters using variance analysis. Ventury nozzle with a pressure of 260 KPa produces microbubbles measuring between 200 - 300 m and a spray range of 6.13 cm with a resistance of around 3.2-4.6 seconds. The use of a ventury nozzle model aerator increases dissolved oxygen and distributes it evenly in the hydroponic nutrient solution, thereby increasing the growth and yield of lettuce plants.
Afisna L.P., Juwana W.E., Indarto I., Deendarlianto, Nugroho F.M. 2017. Performance of porous-venturi microbubble generator for aeration process. Journal of Energy, Mechanical, Material and Manufacturing Engineering, 2(2): 73-80.
Barbosa G.L., Gadelha F.D.A., Kublik N., Proctor A., Reichelm L., Weissinger E., Wohlleb G.M., Halden R.U. 2015. Comparison of land, water, and energy requirements of Lettuce grown using hydroponic vs. conventional agricultural methods. International Journal of Environmental Research and Public Health, 12(6): 6879–6891.
Batubara Y., Mawarni D.I., Indarto I., Deendarlianto. 2022. Characterization of bubbles produced by the swirl flow type microbubble generator using the image processing method. Proceedings The 13th Industrial Research Workshop and National Seminar Bandung, 13-14 July 2022: 880-888.
Bok G., Choi J., Lee K., Park J. 2019. Microbubbles increase glucosinolate contents of watercress (Nasturtium officinale R. Br.) grown in hydroponic cultivation. Protected Horticulture and Plant Factory, 28(2): 158-165. DOI: org/10.12791/KSBEC.2019.28.2.158
Bostanci K.B., Ulger S. 2022. Comparison of spinach cultivation in floating hydroponic system and soil in glasshouse and open field conditions. Mediterranean Agricultural Sciences,35(1): 7-14. DOI: 10.29136/mediterranean.1061475
Darwiyah S., Rochman N., Setyono S. 2021. Production and quality of melon (Cucumis melo L.) of hydroponic floating rafts fed with different potassium nutrients. Journal of Agronida,7(2): 94-103
Dharmayanti N.K.S.A., Sumiyati S., Yulianti N.L. 2022. The effect of providing aeration on the growth and production of Lettuce (Lactuca sativa L.) with a floating raft hydroponic system. Journal of Biosystems and Agricultural Engineering, 10(1): 121-128.
Dennis E.S., Dolferus R., Ellis M., Rahman M., Wu Y., Hoeren F.U., Grover A., Ismond K.P., Good A.G., Peacock W.J. 2000. Molecular strategies for improving waterlogging tolerance in plants. Journal of Experimental Botany, 51(342): 89-97. DOI:org/10.1093/jexbot/51.342.89
Deendarlianto, Wiratni A.E., Tontowi, Indarto, Iriawan A.G.W. 2015. The implementation of a developed microbubble generator on the aerobic wastewater treatment. International Journal of Technology, 6(6): 924–930.
Ebina K., Shi K., Hirao K., Hashimoto J., Kawato J., Kaneshiro S., Morimoto M., Koizumi K., Yoshikawa H. 2013. Microbubble generator, oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice. PLoS ONE, 8(6): e65339. DOI: 10.1371/journal.pone.0065339
Fauzi R., Putra E.T.S., Ambarwati E. 2013. Oxygen enrichment in the root zone to increase growth and yield of Lettuce (Lactuca sativa L.) hydroponically. Vegetalika, 2(4):.63-74. Gardner F.B., Pearce R.B., Mitchell R.L. 1985. Physiology of Crop Plants. Iowa StateUniversity Press, Ames, IA.
Grishin A., Grishin A., Semenova N., Grishin V., Knyazeva I., Dorochov A. 2021. The effect of dissolved oxygen on microgreen productivity. BIO Web of Conferences 30,05002 (2021). DOI: org/10.1051/bioconf/20213005002
Gumisiriza M.S., Ndakidemi P.A., Mbega E.R. 2022. A simplified non-greenhouse hydroponic system for small-scale soilless urban vegetable farming. MethodsX, 9.101882: 1-7. DOI: org/10.1016/j.mex.2022.101882.
Ikeuraa H., Tsukadab K., Tamaki M. 2017. Effect of microbubbles in deep flow hydroponic culture on Spinach growth. Journal of Plant Nutrition, 40(16): 2358-2364. DOI:10.1080/01904167.2017.1346663
Ikeura H., Takahashi H., Kobayashi F., Sato M., Tamaki M. 2017. Effects of microbubble generation methods and dissolved oxygen concentrations on growth of Japanese mustard spinach in hydroponic culture. The Journal of Horticultural Science and Biotechnology,93(5): 1-8. DOI: 10.1080/14620316.2017.1391718.
Juwana W.E., Widyatama A., Dinaryanto O., Budhijanto W., Indarto, Deendarlianto. 2019.Hydrodynamic characteristics of the microbubble dissolution in liquid using orifice type microbubble generator. Chemical Engineering Research and Design, 141: 436–448.
Karne H., Iyer V., Joshi S., Diwan S., Gole M., Sunthankar S., Phansalkar S. 2023.Hydroponics: A review of modern growing techniques. European Chemical Bulletin, 12(4):11231-11256. DOI: 10.48047/ecb/2023.12.si4.1016
Kodama Y., Kakugawa A., Takahashi T., Kawashima H. 2000. Experimental study on microbubbles and their applicability to ships for skin friction reduction. International Journal of Heat and Fluid Flow, 21: 582-588. DOI: 10.1016/S0142-727X(00)00048-5
Krisna B., Putra E.E.T.S., Rogomulyo R., Kastono D. 2017. Effect of oxygen and calcium enrichment on root growth and yield of curly Lettuce (Lactuca sativa L.) in floating raft hydroponics. Journal of Vegetalika, 6(4): 14-27.
Krisnawati D., Triyono S., Kadir M.Z. 2014. The effect of aeration on the growth of baby Kailan plants (Brassica oleraceae var. achepala) using floating hydroponic technology inside and outside the greenhouse. Lampung Agricultural Engineering Journal, 3(3): 213-222.
Laksana M. 2008. Microbubble generator using the spherical ball method in a flowing pipe. Thesis, Department of Mechanical Engineering, Faculty of Engineering, University of Indonesia. Indonesia.
Majid A.I., Nugroho F.M., Juwana W.E., Budhijanto W., Deendarlianto, Indarto. 2018. On the performance of venturi-porous pipe microbubble generator with inlet angle of 20° and outlet angle of 12°. Proceedings of the 9th International Conference on Thermofluids 2017. AIP Conference Proceedings. DOI: org/10.1063/1.5050000
Majid M., Khan J.N., Ahmad Shah Q.M., Masoodi K.Z., Afroza B., Parvaze S. 2021.Evaluation of hydroponic systems for the cultivation of Lettuce (Lactuca sativa L. var. Longifolia) and comparison with protected soil-based cultivation. Agricultural Water Management, 245: 1-13. DOI: org/10.1016/j.agwat.2020.106572
Mawarni D.I., Korawan A.D. 2019. Effect of water fluid discharge on bubble diameter distribution in orifice-porous tube type microbubble generator. Journal of Industrial, Mechanical, Electrical and Computer Science Engineering, 13(2): 17-21
Maske S.J., Rai D.S., Kale V.S., Raut B.D., Chintale G.A. 2012. Microbubble and its applications. International Journal of Pharmacy & Life Sciences, 3(12) :2228-2235.
Maluin F.N., Hussein M.Z., Nik Ibrahim N.N.L., Wayayok A., Hashim N. 2021. Some emerging opportunities of nanotechnology development for soilless and microgreen farming. Agronomy, 11(6): 1-28. DOI: 10.3390/agronomy11061213
Meriaty M., Sihaloho A., Pratiwi K.D. 2021. Growth and yield of Lettuce plants (Lactuca sativa L.) due to the type of hydroponic growing media and AB Mix nutrient concentration. Agroprimatech, 4(2): 75-84.
Mollah A., Prameswari D.A., Ashan M.A., Safitri W., Amal M.A.I., Anugrah A.A. 2021.
Guide Book; Solar Cell Based Microbubble Technology to Increase Vegetable Yields in Floating Raft Hydroponic Systems. Ficus Press, Hasanuddin University Makassar, Indonesia.
Muharomah R., Setiawan B.I., Purwanto M.Y.J., Liyantono L. 2020. Temporal crop coefficients and water productivity of Lettuce (Lactuca sativa L.) hydroponics in planthouse. Agricultural Engineering International: CIGR Journal, 22(1): 22-29.
Nikolov N.V., Atanasov A.Z., Evstatiev B.I., Vladut V.N., Biris S.S. 2023. Design of a small- scale hydroponic system for indoor farming of leafy vegetables. Agriculture, 13(6): 1-13. DOI: org/10.3390/agriculture13061191
Nurrohman M., Suryanto A., Wicaksono K.P. 2014. Use of fermented paitan extract and liquid rabbit Dung as a nutrient source in Ffoating raft hydroponic mustard cultivation. Journal of Crop Production, 2(8): 649–657.
Park J.S., Kurata K. 2009. Application of microbubbles to hydroponics solution promotes Lettuce growth. HortTechnology, 19(1): 212-215. DOI: 10.21273/HORTSCI.19.1.212
Parmar R., Majumder S.K. 2013. Microbubble generations and aided transport process intensification-A state–of–the art report. Chemical Engineering and Processing, 64: 79-97.
Prasetyo J., Saqroth F.I., Hendrawan Y. 2023. Effect of microbubbles on the growth of mustard Pak Choi (Brassica rapa L.) in wick system hydroponics. Journal of Agricultural Technology, Special Issue [Februari 2023]: 9-16.
Puspitahati P., Andica F. 2022. Floating raft hydroponic system using spray bars pumps on Pakcoy cultivation growth (Brassica rapa L.). Proceedings of the 3rd Sriwijaya International Conference on Environmental Issues, SRICOENV 2022, October 05-06, Palembang, Indonesia https://eudl.eu/proceedings/SRICOENV/2022
Rahman M.J., Quamruzzaman M., Ali M.M., Ahmed S., Chawdhery M.R.A, Sarkar M.D. 2017. The effects of irrigation timing on growth, yield, and physiological traits of hydroponic lettuce. Azarian Journal of Agriculture, 4: 193-199
Rahmawaty A.D., Tysmoro S.Y. 2018. Growth response of three varieties of Lettuce (Lactuca sativa L.) to various types of nutrients in the NFT hydroponic system. Journal of Crop Production, 6(10): 2491-2500.
Rai I.N. 2002. Diagnosis of mineral nutrient deficiencies and toxicity in plants. Philosophy of Science Papers. IPB Postgraduate Program. Bogor. https://www.rudyct.com/PPS702- ipb/04212/i_nyoman_rai.htm
Roblero M.J.M., Pineda J.P., León M.T.C., Castellanos J.S. 2021. Oxygen in the root zone and its effect on plants. Revista Mexicana de Ciencias Agricolas, 11(4): 931-943. DOI: org/10.29312/remexca.v11i4.2128
Romalasari A., Sobari E. 2019. Lettuce (Lactuca sativa L.) production using a hydroponic system with different nutrient sources. Agriprima, Journal of Applied Agricultural Sciences,3(1): 36-41. DOI: 10.25047/agriprima.v3i1.158
Siregar J., Triyono S., Suhandy D. 2015. Testing of several hydroponic nutrients on Lettuce (Lactuca sativa L.) using modified floating system hydroponic technology. Lampung Agricultural Engineering Journal, 4(1): 65-72
Suyantohadi A., Kyoren T., Hariadi M., Purnomo M.H., Morimoto T. 2010. Effect of high consentrated dissolved oxygen on the plant growth in a deep hydroponic culture under a low temperature. IFAC Proceedings, 43(26): 251-255. DOI: org/10.3182/20101206-3-JP-3009.00044
Tamala U., Al Habib I.M., Zuhro F. 2019.. Effect of waterlogging percentage to time of hypoxia some tobacco accessions (Nicotiana tabacum L). BIO-CONS, Journal of Biology and Conservation, 1(2): 29-37
Sitti Nur Faridah faridah_sn@agri.unhas.ac.id
Faculty of Agriculture, Hasanuddin University
Indonesia
Abdul Azis
Faculty of Agriculture, Hasanuddin University
Indonesia
Tisha Aditya A. Jamaluddin
Energy Conversion and Conservation Centre, National Research and Innovation Agency
Indonesia
Alifah Agil Anugrah
Energy Conversion and Conservation Centre, National Research and Innovation Agency
Indonesia
Husnul Mubarak
Faculty of Agriculture, Hasanuddin University
Indonesia
This work is licensed under a Creative Commons Attribution 4.0 International License.