Automated Water and Nutrient Filling for the Reservoir of a Kratky Hydroponic for Pak Choi (Brassica rapa subsp chinensis) Cultivation PENGISIAN AIR DAN NUTRISI OTOMATIS PADA RESERVOIR HIDROPONIK KRATKY UNTUK BUDIDAYA PAKCOY (Brassica rapa subsp chinensis) Section Articles
##plugins.themes.academic_pro.article.main##
Abstract
The automated water and nutrient filling system in the Kratky hydroponic method for pak choi (Brassica rapa subsp. chinensis) is designed to control the reservoir’s water level and nutrient concentration. An ultrasonic sensor measures the water surface height, while a TDS sensor monitors nutrient concentration. Both sensors are controlled by an Arduino Uno microcontroller, which manages the operation of the water and nutrient pumps. This study aimed to design and test the automated filling system. The research involved tool development, system testing, and data analysis through calibration using percentage error and Root Mean Square Error (RMSE) to evaluate the pump’s performance. The results showed that the system functioned optimally: the water pump was activated when the water level ranged between 30 and 40 cm, and the nutrient pump operated when the ppm value fell below 600. The ultrasonic sensor had an error of 0.76%, and the TDS sensor 0.60%, both under 1%, indicating high accuracy. At 30 days after transplanting, the pak choi plants had an average height of 15.05 cm and a leaf width of 14.98 cm. The water pump performance under the automated filling system had an RMSE value of 7.5498, indicating good reliability.
##plugins.themes.academic_pro.article.details##
References
- Anisa, N., Marta Saputra, H., Aini, S. N., & Zasari, M. (2023). Effect of Static Hydroponic and Huett’s Lettuce Concentration Levels on Growth and Yield of Lettuce. Enviagro, Jurnal Pertanian Dan Lingkungan, 9(2), 1–41.
- Baagdi, P., Vishal Dahiya, P., & Dave, M. (2025). Reviewing the Impact of Machine Learning and IoT on Hydroponic Yield and Resource Efficiency. TIJER-International Research Journal, 12(3), 795–798. www.tijer.org
- Bakriansyah, A. H., Daud, M., Taufiq, T., & Asran, A. (2023). Prototype of Automatic Monitoring and Control System for Water Supply, Acidity, and Nutrition in Internet of Things Based DFT Hydroponics. MOTIVECTION: Journal of Mechanical, Electrical and Industrial Engineering, 5(2), 339–350. https://doi.org/10.46574/motivection.v5i2.235
- Bilagi, N., Hegde, N. M., Karande, K., Naik, D. K., & Suvarna, H. (2023). A review on Automation in Hydroponics. International Research Journal of Engineering and Technology (IRJET), 10(05), 291–296. www.irjet.net
- Fadil, M., Ahmad Munir, & Muhammad Tahir Sapsal. (2023). On-Off Water Level Control and IoT Monitoring for Aquaponics Systems. Salaga Journal, 2(2), 90–100. https://doi.org/10.70124/salaga.v1i2.1355
- Fitriyah, H., Budi, A. S., Maulana, R., & Setiawan, E. (2022). Controlling the Nutrition Water Level in the Non-Circulating Hydroponics based on the Top Projected Canopy Area. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 16(2), 181. https://doi.org/10.22146/ijccs.70556
- Gumisiriza, M. S., Ndakidemi, P., Nalunga, A., & Mbega, E. R. (2022). Building sustainable societies through vertical soilless farming: A cost-effectiveness analysis on a small-scale non-greenhouse hydroponic system. Sustainable Cities and Society, 83. https://doi.org/10.1016/j.scs.2022.103923
- Himawan, A., Putra, W. H. N., & Setiawan, E. (2024). RAFT: An IoT-Based Nutrition Monitoring System for Bok Choy Hydroponics Plants. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 8(2), 258–264. https://doi.org/10.29207/resti.v8i2.5560
- Khairani, I., & Prawiroredjo, K. (2025). Rancang Bangun Sistem Hidroponik Otomatis Berbasis Internet of Things. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 14(1), 1–8. https://doi.org/10.22146/jnteti.v14i1.13032
- Kurniawan, A., & Lestari, H. A. (2020). Control System of Nutrient in Floating Hydroponic System for Water Spinach (Ipomea reptans) Using Telegram-Based IoT. Jurnal Teknik Pertanian Lampung, 9(4), 326–335. https://doi.org/10.23960/jtep-l.v9.i4.326-335
- Kurniawan, A., Saputra, T. W., & Ramadan, A. (2020). Automatic Rain Pipe Fertigation System At Main Nursery Of Palm Oil (Elaeis guineensis Jacq) WITH Microcontroller Arduino UNO. Jurnal Teknik Pertanian Lampung, 9(3), 184–190. https://doi.org/10.23960/jtep-l.v9.i3.184-190
- Lestari, H. A., Kurniawan, A., & Yuwono, T. A. (2023). Otomatisasi Ultrasonik Fogger Budidaya Selada Keriting Hijau Secara Fogponik di Pertanian Indoor berbasis Internet of Things (IoT). Jurnal Ilmiah Inovasi, 23(2), 111–117. https://doi.org/10.25047/jii.v23i2.3616
- Nursyahid, A., Setyawan, T. A., Sa’diyah, K., Wardihani, E. D., Helmy, H., & Hasan, A. (2021). Analysis of Deep-Water Culture (DWC) hydroponic nutrient solution level control systems. IOP Conference Series: Materials Science and Engineering, 1108(1), 012032. https://doi.org/10.1088/1757-899x/1108/1/012032
- Ogbolumani, O. A., & Mabaso, B. (2023). An IoT-Based Hydroponic Monitoring and Control System for Sustainable Food Production. Ogbolumani & Mabaso, 4(2), 106–140.
- Penjor, T., Dorji, L., Wangmo, D., Yangzom, K., & Wangchuk, T. (2022). Automation of Hydroponics System using Open-source Hardware and Software with Remote Monitoring and Control. Bhutanese Journal of Agriculture, 5(1), 95–108. https://doi.org/10.55925/btagr.22.5108
- Prabowo, M. C. A., Janitra, A. A., & Wibowo, N. M. (2023). Sistem Monitoring Hidroponik Berbasis IoT Dengan Sensor Suhu, pH, dan Ketinggian Air Menggunakan ESP8266. Technoscienza, 7(2), 313–323. https://doi.org/https://doi.org/10.51158/tecnoscienza.v7i2.894
- Praptodiyono, S., Saraswati, I., & Kusuma, S. T. (2024). Design of automatic control system on pakcoy plant parameters in nutrient film technique hydroponic media. TEKNIKA: Jurnal Sains Dan Teknologi, 20(01), 86–92. https://doi.org/10.62870/tjst.v20i1.23142
- Prawira, F. A., Priyandoko, G., & Siswanto, D. (2023). Smart Hidroponik Sistem Rakit Apung Mengontrol pH (Potential Hydrogen) Tanaman Pakcoy Secara Otomatis. Jurnal Teknologi Elektro, 14(03), 166. https://doi.org/10.22441/jte2023.v14i3.007
- Purwalaksana, A. Z., Wahyu, S., Ndari, W. E. W., Syah, S. A., Rismawati, E., Kusumadjati, A., & Suharmanto, P. (2024). IoT System for Floating Raft Hydroponics: Nutrient Monitoring and Automation. Journal of Physics: Conference Series, 2866(1), 1. https://doi.org/10.1088/1742-6596/2866/1/012042
- Putri, N. C., Nyayu, N. S. K., & Saputra, H. M. (2022). Substitusi Hara Mikro Formulasi Huett’s Lettuce Terhadap Pertumbuhan Selada (Lactuca sativa L.) di Dua Sistem Hidroponik Statis. Jurnal Hortikultura Indonesia, 13(3), 128–132. https://doi.org/10.29244/jhi.13.3.128-132
- Tama, A. W., & Suprihati. (2020). Making Alternative Fertilizer For Cultivating Bok Choy (Brassica Rapa Subsp. Chinensis) With Floating Raft Hydroponic System. Jurnal Teknik Pertanian Lampung, 9(3), 163–170. https://doi.org/10.23960/jtep-l.v9i3.162-170
- Vega, I., Garay-Rodriguez, G., Lee, B., Moses, C., Mock, V., Almanza, E., Carni, M., Durocher, S., Jacobs, J. M., Kaczmar, N. S., Mattson, N., Soledad Benitez Ponce, M., & Heiden, N. (2024). Unoxygenated Kratky systems are a viable alternative to active deep water culture approaches. AgriRxiv, 1(1), 1–8. https://doi.org/http://dx.doi.org/10.31220/agriRxiv.2024.00272
- Wanniachchi, L. R., & Jayakody, A. (2022). Sustainable Farming in Soilless Culture Non-Circulating Kratky Method Using Fuzzy Logic Control and Measure Greenness. Iconic Research and Engineering Journal, 5(7), 13–18.
- Zziwa, A., Wanyama, J., Matsapwe, D., Kizito, S. S., Mibulo, T., & Baidhe, E. (2024). Automation and control system implementation in a smallholder crop production in Uganda: A review. Advances in Modern Agriculture, 5(2), 2406. https://doi.org/10.54517/ama.v5i2.2406