Kinetics Modelling of Ziziphus spina-christi (L.) Leaves Drying Using Solar Drying Method
##plugins.themes.academic_pro.article.main##
Abstract
The drying method used can affect the drying characteristics and quality of the final product such as color parameters. The purpose of this research is to study the kinetics of Z. spina-christi leaves drying, find a mathematical model that best fits the drying characteristics, and analyze the color change of dried Z. spina-christi leaves and their brew. The drying process is carried out with 2 treatments, namely using a solar dryer and by drying in an open space using direct sunlight. There are 13 mathematical models of thin layer drying selected to simulate the drying characteristics of Z. spina-christi leaves. Identification of the Lab* value is used to calculate the browning index of the leaves due to the drying method used. The results stated that the solar power dryer could increase the drying rate of Z. spina-christi leaves, thus shortening the drying time. The Diffuision Approach model is the most accurate mathematical model in describing the drying characteristics of Z. spina-christi leaves for the two drying methods tested based on the resulting constant values. Each drying method affects the browning reaction of the dried Z. spina-christi leaves which also has an impact on the color of the brew, where drying in direct sunlight will produce a darker color of the dried leaves and brew.
##plugins.themes.academic_pro.article.details##
References
-
Adhamatika, A., & Murtini, E. S. (2021). Pengaruh metode pengeringan dan persentase teh kering terhadap karakteristik seduhan teh daun bidara (Ziziphus mauritiana L.). Jurnal Pangan Dan Agroindustri, 9(4), 196–207.
Ashraf, Z., Hamidi-Esfahani, Z., & Sahari, M. A. (2012). Evaluation and characterization of vacuum drying of date paste. Journal of Agricultural Science and Technology, 14, 565–575.
Darvishi, H., Asl, A. R., Asghari, A., Azadbakht, M., Najafi, G., & Khodaei, J. (2014). Study of the drying kinetics of pepper. Journal of the Saudi Society of Agricultural Sciences, 13(2), 130–138.
Demiray, E., & Tulek, Y. (2014). Drying characteristics of garlic (Allium sativum L) slices in a convective hot air dryer. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 50(6), 779–786. https://doi.org/10.1007/s00231-013-1286-9
El-ishaq, A. A. R. O., & Nangere, Z. A. (2016). Proximate and phytochemical analysis of Ziziphus mauritania Lam leaves. Frontiers in Biomedical Sciences, 1(2), 45–49.
Fithriani, D., Assadad, L., & Arifin, Z. (2016). Karakteristik dan Model Matematika Kurva Pengeringan Rumput Laut Eucheuma cottonii. Jurnal Pascapanen Dan Bioteknologi Kelautan Dan Perikanan, 11(2), 159. https://doi.org/10.15578/jpbkp.v11i2.290
Fudholi, A., Ruslan, M., & Haw, L. (2012). Mathematical modeling of brown seaweed drying curves. In Proceedings of the WSEAS International Conference on Applied Mathematics in Electrical and Computer Engineering, 207–211.
Hadibi, T., Boubekri, A., Mennouche, D., Benhamza, A., & Abdenouri, N. (2021). 3E analysis and mathematical modelling of garlic drying process in a hybrid solar-electric dryer. Renewable Energy, 170, 1052–1069.
Hawa, L. C., Ubaidillah, U., & Wibisono, Y. (2019). Proper model of thin layer drying curve for taro (Colocasia esculenta L. Schott) chips. International Food Research Journal, 26(1), 209–216.
Irfan, A. M., Arimansyah, Rasyid, A. R., & Lestari, N. (2020). Unjuk kerja pengering tenaga surya tipe efek rumah kaca untuk pengeringan cabai dengan perlakuan low temperature long time blanching. Rona Teknik Pertanian, 13(April), 1–12. https://doi.org/https://doi.org/10.17969/rtp.v13i2.17788
Jiang, J., Dang, L., Tan, H., Pan, B., & Wei, H. (2017). Thin layer drying kinetics of pre-gelatinized starch under microwave. Journal of the Taiwan Institute of Chemical Engineers, 72, 10–18.
Kadam, D. M., Goyal, R. K., & Gupta, M. K. (2011). Mathematical modeling of convective thin layer drying of basil leaves. Journal of Medicinal Plant Research, 5(19), 4721–4730.
Kusriani, R. ., Nawawi, A., & Machter, E. (2015). Penetapan kadar senyawa fenolat total dan aktivitas antioksidan ekstrak daun, buah dan biji bidara (Ziziphus spina-christi l.). Psosiding SNapp2015 Kesehatan, 311–318.
Lagawa, I. N. C., Kencana, P. K. D., & Aviantara, I. G. N. A. (2019). Pengaruh waktu pelayuan dan suhu pengeringan terhadap karakteristik teh daun bambu tabah (Gigantochloa nigrociliata BUSE-KURZ). Jurnal BETA (Biosistem Dan Teknik Pertanian), 8(2), 223.
Lestari, N., & Samsuar. (2021). Analysis of red chilli drying kinetics affected by low-temperature long time blanching. IOP Conference Series: Earth and Environmental Science, 807(3). https://doi.org/10.1088/1755-1315/807/3/032002
Lingayat, A., Balijepalli, R., & Chandramohan, V. P. (2021). Applications of solar energy based drying technologies in various industries – A review. Solar Energy, 229(May), 52–68.
Maskan, A., Kaya, S., & Maskan, M. (2002). Hot air and sun drying of grape leather (pestil). Journal of Food Engineering, 54(1), 81–88.
Mukhtarom, K., Sutrisno, & Hasbullah, R. (2016). Perlakuan air panas diikuti pencelupan dalam larutan CaCl2 untuk mempertahankan kualitas buah belimbing manis (Averrhoa Carambola L.). Jurnal Keteknikan Pertanian, 4(1), 37–44.
Murali, S., Sathish Kumar, K., Alfiya, P. V., Delfiya, D. S. A., & Samuel, M. P. (2019). Drying kinetics and quality characteristics of Indian mackerel (Rastrelliger kanagurta) in solar–electrical hybrid dryer. Journal of Aquatic Food Product Technology, 28(5), 541–554. https://doi.org/10.1080/10498850.2019.1604597
Nag, S., & Dash, K. K. (2016). Mathematical modeling of thin layer drying kinetics and moisture diffusivity study of elephant apple. International Food Research Journal, 23(6), 2594–2600.
Prasetyo, D. J., Jatmiko, T. H., & Poeloengasih, D. (2018). Drying characteristics of Ulva sp. and Sargassum sp. seaweeds. JPB Kelautan Dan Perikanan, 13(1), 1–11.
Rohdiana, D., Arief, D. Z., & Budiman, A. (2013). Aktivitas penghambatan pertumbuhan bakteri Escherichia coli oleh berbagai jenis teh dan seduhannya. Jurnal Penelitiaan Teh Dan Kina, 16(1), 37–44.
Saad, A., Touati, B., Draoui, B., Tabti, B., Abdenebi, A., & Benaceur, S. (2014). Mathematical modeling of moisture sorption isotherms and determination of isosteric heats of sorption of Ziziphus leaves. Modelling and Simulation in Engineering, 2014. https://doi.org/10.1155/2014/427842
Saxena, J., & Dash, K. K. (2015). Drying kinetics and moisture diffusivity study of ripe jackfruit. International Food Research Journal, 22(1), 414–420.
Taheri-Garavand, A., & Meda, V. (2018). Drying kinetics and modeling of savory leaves under different drying conditions. International Food Research Journal, 25(4), 1357–1364.
Tiwari, A. (2016). A review on solar drying of agricultural produce. Journal of Food Processing & Technology, 7(9). https://doi.org/10.4172/2157-7110.1000623
Yulianto, M. E., Arifan, F., Ariwibowo, D., Hartati, I., & Mustikaningtyas, D. (2007). Pengembangan proses inaktivasi enzim polifenol oksidase untuk produksi teh hijau berkatekin tinggi. Jurnal Kimia Sains Dan Aplikasi, 10(1), 24–30. https://doi.org/10.14710/jksa.10.1.24-30
Zielinska, M., & Markowski, M. (2012). Color Characteristics of Carrots: Effect of Drying and Rehydration. International Journal of Food Properties, 15(2), 450–466. https://doi.org/10.1080/10942912.2010.489209