Article Sidebar

Published: May 15, 2025
Keywords:
Greenhouse, Microclimate control, Arduino, IoT
Section: Articles
Tisha Aditya A. Jamaluddin  National Research and Innovation Agency, Energy Conversion and Conservation Research Centre
Faridah Sitti Nur  Faculty of Agriculture, Hasanuddin University
Sapsal Muhammad Tahir  Faculty of Agriculture, Hasanuddin University
Andini Dani Achmad  Department of Electrical Engineering, Faculty of Engineering. Hasanuddin University
Ari Reskyanto   Faculty of Agriculture, Hasanuddin University
Abstract:

Global climate change has increased fluctuations in temperature and humidity, threatening the sustainability of the agricultural sector. This research aimed to develop an Internet of Things (IoT)-based microclimate control system for greenhouses using Arduino and the Thingspeak platform. The system was designed as a closed-loop using an ESP-32 as the control center, a DHT-22 sensor for data acquisition, and Solid-State Relay (SSR) actuators to control the blower, heater, and misting pump. Testing was conducted in a greenhouse with an area of 3 m² and a height of 2.3 meters. The results showed that the system could maintain a temperature of 27–36°C (external deviation: 29–48°C) and humidity of 85–90% (external deviation: 47–100%) with low overshoot, namely 1.18% (temperature) and 1.49% (humidity), and a settling time of under 4 minutes. The steady-state error was within the tolerance limit (maximum 5%). However, the system experienced a data loss of 26.04% and an average transmission delay of 16.5 seconds due to network instability at the test location. Nevertheless, the system proved effective in maintaining an optimal microclimate for small-scale plant growth.

Abidin, I., Faridah, S. N., Sapsal, M. T., Samsuar, S., & Mubarak, H. (2024). Automation of humidity in the greenhouses for plant cultivation. BIO Web of Conferences, 96. https://doi.org/10.1051/bioconf/20249604004

Ali, M. I., Suhardi, & Haerani. (2024). Effectiveness of the Application of Drip Irrigation In Some Planting Media for Caisim ( Barassica juncea L . ). Salaga Journal, 02(1), 1–9. https://doi.org/10.70124/salaga.v2i1.1354

Amaral, L. A., Hessel, F. P., Bezerra, E. A., Corrêa, J. C., Longhi, O. B., & Dias, T. F. O. (2011). eCloudRFID – A mobile software framework architecture for pervasive RFID-based applications. Journal of Network and Computer Applications, 34(3), 972–979. https://doi.org/https://doi.org/10.1016/j.jnca.2010.04.005

Asmaleni, P., Hamdani, D., & Sakti, I. (2020). Pengembangan Sistem Kontrol Kipas Angin Dan Lampu Otomatis Berbasis Saklar Suara Menggunakan Arduino Uno. Jurnal Kumparan Fisika, 3(1), 59–66. https://doi.org/10.33369/jkf.3.1.59-66

Ayusari, Waris, A., & Sapsal, M. T. (2024). Application of Fuzzy Control and IoT Monitoring on Small Scale Biofermentor for Making Virgin Coconut Oil. Salaga Journal, 02(2), 58–64. https://doi.org/10.70124/salaga.v2i2.1776

Chen, S., Liu, A., Tang, F., Hou, P., Lu, Y., & Yuan, P. (2025). A Review of Environmental Control Strategies and Models for Modern Agricultural Greenhouses. Sensors, 25(5). https://doi.org/10.3390/s25051388

Eduard, R., Ruslan, W., Iskandar, I., & Setyanto, D. (2022). Setting Temperature and Humidity with a Misting System in a Pilot Greenhouse at Cisauk-Tangerang, Indonesia. Applied Sciences (Switzerland), 12(18). https://doi.org/10.3390/app12189192

Fadil, M., Munir, A., & Sapsal, M. T. (2023). On-Off Water Level Control and IoT Monitoring for Aquaponics Systems. Salaga Journal, 02(2), 90–100. https://doi.org/10.70124/salaga.v1i2.1355

Furqon, H., Handarto, H., & Saukat, M. (2022). Uji Kinerja Pengoperasian Sistem Pendinginan Pengabutan pada Greenhouse di Kebun Hidroponik, Fakultas Pertanian, Universitas Padjadjaran. National Multidisciplinary Sciences, 1(2), 109–115. https://doi.org/10.32528/nms.v1i2.61

Laksono, S. K., Triwiyatno, A., & Sumardi. (2011). Pengaturan sudut fasa berbasis logika fuzzy untuk sistem pengaturan temperatur [Universitas Diponegoro]. http://eprints.undip.ac.id/25666/

Nurnasari, E., & Djumadi. (2010). Pengaruh Kondisi Ketinggian Tempat Terhadap Produksi dan Mutu Tembakau Temanggung. Buletin Tanaman Tembakau, Serat & Minyak Industri, 2(2), 45–59.

Ogata, K. (1995). Discrete Time Control Systems (Second). Prentice Hall.

Ogata, K. (1997). Modern Control Engineering (Third). Prentice Hall.

Prabowo, A. H. (2018). Rancang Bangun Sistem Kendali Otomatis Berbasis Mikrokontroler Untuk Mengendalikan Temperatur Dan Rh Pada Kumbung Jamur Merang (Volvariella Volvaceae L.). Universitas Lampung.

Rianti, K. P. K., & Prastyo, Y. (2022). Analisis Penggunaan Sensor Suhu Dan Kelembaban Untuk Monitoring Lingkungan Greenhouse Berbasis Arduino. Antivirus : Jurnal Ilmiah Teknik Informatika, 16(2), 200–210. https://doi.org/10.35457/antivirus.v16i2.2512

Salinas, I., Hueso, J. J., & Cuevas, J. (2021). Active control of greenhouse climate enhances papaya growth and yield at an affordable cost. Agronomy, 11(2). https://doi.org/10.3390/agronomy11020378

Sari, F. Y. (2013). Analisa Steady State Error Sistem Kontrol Linier Invariant Waktu. Jurnal Matematika UNAND, 2(3), 91–97. https://doi.org/10.25077/jmu.2.3.91-97.2013

Tisha Aditya A. Jamaluddin

National Research and Innovation Agency, Energy Conversion and Conservation Research Centre

Indonesia

Faridah Sitti Nur faridah_sn@agri.unhas.ac.id

Faculty of Agriculture, Hasanuddin University

Indonesia

Sapsal Muhammad Tahir

Faculty of Agriculture, Hasanuddin University

Indonesia

Andini Dani Achmad

Department of Electrical Engineering, Faculty of Engineering. Hasanuddin University

Indonesia

Ari Reskyanto

Faculty of Agriculture, Hasanuddin University

Indonesia

Aditya A. Jamaluddin, T., Sitti Nur, F., Muhammad Tahir, S., Dani Achmad, A., & Reskyanto , A. (2025). Temperature and Humidity Control in a Small-Scale Greenhouse in a Tropical Climate. Salaga Journal, 3(1), 6–10. https://doi.org/10.70124/salaga.v3i1.1815