Temperature and Humidity Control in a Small-Scale Greenhouse in a Tropical Climate
Article Sidebar
Global climate change has increased fluctuations in temperature and humidity, threatening the sustainability of the agricultural sector. This research aimed to develop an Internet of Things (IoT)-based microclimate control system for greenhouses using Arduino and the Thingspeak platform. The system was designed as a closed-loop using an ESP-32 as the control center, a DHT-22 sensor for data acquisition, and Solid-State Relay (SSR) actuators to control the blower, heater, and misting pump. Testing was conducted in a greenhouse with an area of 3 m² and a height of 2.3 meters. The results showed that the system could maintain a temperature of 27–36°C (external deviation: 29–48°C) and humidity of 85–90% (external deviation: 47–100%) with low overshoot, namely 1.18% (temperature) and 1.49% (humidity), and a settling time of under 4 minutes. The steady-state error was within the tolerance limit (maximum 5%). However, the system experienced a data loss of 26.04% and an average transmission delay of 16.5 seconds due to network instability at the test location. Nevertheless, the system proved effective in maintaining an optimal microclimate for small-scale plant growth.
Abidin, I., Faridah, S. N., Sapsal, M. T., Samsuar, S., & Mubarak, H. (2024). Automation of humidity in the greenhouses for plant cultivation. BIO Web of Conferences, 96. https://doi.org/10.1051/bioconf/20249604004
Ali, M. I., Suhardi, & Haerani. (2024). Effectiveness of the Application of Drip Irrigation In Some Planting Media for Caisim ( Barassica juncea L . ). Salaga Journal, 02(1), 1–9. https://doi.org/10.70124/salaga.v2i1.1354
Amaral, L. A., Hessel, F. P., Bezerra, E. A., Corrêa, J. C., Longhi, O. B., & Dias, T. F. O. (2011). eCloudRFID – A mobile software framework architecture for pervasive RFID-based applications. Journal of Network and Computer Applications, 34(3), 972–979. https://doi.org/https://doi.org/10.1016/j.jnca.2010.04.005
Asmaleni, P., Hamdani, D., & Sakti, I. (2020). Pengembangan Sistem Kontrol Kipas Angin Dan Lampu Otomatis Berbasis Saklar Suara Menggunakan Arduino Uno. Jurnal Kumparan Fisika, 3(1), 59–66. https://doi.org/10.33369/jkf.3.1.59-66
Ayusari, Waris, A., & Sapsal, M. T. (2024). Application of Fuzzy Control and IoT Monitoring on Small Scale Biofermentor for Making Virgin Coconut Oil. Salaga Journal, 02(2), 58–64. https://doi.org/10.70124/salaga.v2i2.1776
Chen, S., Liu, A., Tang, F., Hou, P., Lu, Y., & Yuan, P. (2025). A Review of Environmental Control Strategies and Models for Modern Agricultural Greenhouses. Sensors, 25(5). https://doi.org/10.3390/s25051388
Eduard, R., Ruslan, W., Iskandar, I., & Setyanto, D. (2022). Setting Temperature and Humidity with a Misting System in a Pilot Greenhouse at Cisauk-Tangerang, Indonesia. Applied Sciences (Switzerland), 12(18). https://doi.org/10.3390/app12189192
Fadil, M., Munir, A., & Sapsal, M. T. (2023). On-Off Water Level Control and IoT Monitoring for Aquaponics Systems. Salaga Journal, 02(2), 90–100. https://doi.org/10.70124/salaga.v1i2.1355
Furqon, H., Handarto, H., & Saukat, M. (2022). Uji Kinerja Pengoperasian Sistem Pendinginan Pengabutan pada Greenhouse di Kebun Hidroponik, Fakultas Pertanian, Universitas Padjadjaran. National Multidisciplinary Sciences, 1(2), 109–115. https://doi.org/10.32528/nms.v1i2.61
Laksono, S. K., Triwiyatno, A., & Sumardi. (2011). Pengaturan sudut fasa berbasis logika fuzzy untuk sistem pengaturan temperatur [Universitas Diponegoro]. http://eprints.undip.ac.id/25666/
Nurnasari, E., & Djumadi. (2010). Pengaruh Kondisi Ketinggian Tempat Terhadap Produksi dan Mutu Tembakau Temanggung. Buletin Tanaman Tembakau, Serat & Minyak Industri, 2(2), 45–59.
Ogata, K. (1995). Discrete Time Control Systems (Second). Prentice Hall.
Ogata, K. (1997). Modern Control Engineering (Third). Prentice Hall.
Prabowo, A. H. (2018). Rancang Bangun Sistem Kendali Otomatis Berbasis Mikrokontroler Untuk Mengendalikan Temperatur Dan Rh Pada Kumbung Jamur Merang (Volvariella Volvaceae L.). Universitas Lampung.
Rianti, K. P. K., & Prastyo, Y. (2022). Analisis Penggunaan Sensor Suhu Dan Kelembaban Untuk Monitoring Lingkungan Greenhouse Berbasis Arduino. Antivirus : Jurnal Ilmiah Teknik Informatika, 16(2), 200–210. https://doi.org/10.35457/antivirus.v16i2.2512
Salinas, I., Hueso, J. J., & Cuevas, J. (2021). Active control of greenhouse climate enhances papaya growth and yield at an affordable cost. Agronomy, 11(2). https://doi.org/10.3390/agronomy11020378
Sari, F. Y. (2013). Analisa Steady State Error Sistem Kontrol Linier Invariant Waktu. Jurnal Matematika UNAND, 2(3), 91–97. https://doi.org/10.25077/jmu.2.3.91-97.2013
Tisha Aditya A. Jamaluddin
National Research and Innovation Agency, Energy Conversion and Conservation Research Centre
Indonesia
Faridah Sitti Nur faridah_sn@agri.unhas.ac.id
Faculty of Agriculture, Hasanuddin University
Indonesia
Sapsal Muhammad Tahir
Faculty of Agriculture, Hasanuddin University
Indonesia
Andini Dani Achmad
Department of Electrical Engineering, Faculty of Engineering. Hasanuddin University
Indonesia
Ari Reskyanto
Faculty of Agriculture, Hasanuddin University
Indonesia
Copyright (c) 2025 Tisha Aditya A. Jamaluddin, Faridah Sitti Nur, Sapsal Muhammad Tahir, Andini Dani Achmad, Ari Reskyanto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.