Article Sidebar

Published: Dec 31, 2025
Keywords:
Drought monitoring, NDDI, Sentinel-2A, Paddy fields, Remote sensing
Section: Articles
Nur Rahmi  Faculty of Agricultural Technology, Hasanuddin University, Makassar, Indonesia
Husnul Mubarak  Faculty of Agricultural Technology, Hasanuddin University, Makassar, Indonesia
Sitti Nur Faridah  Faculty of Agricultural Technology, Hasanuddin University, Makassar, Indonesia
Muhammad Tahir Sapsal  Faculty of Agricultural Technology, Hasanuddin University, Makassar, Indonesia
Abstract:

Drought is a significant climate-related hazard that severely impacts agricultural productivity, particularly in rainfed paddy fields. This study aimed to analyze the spatial distribution and severity of drought in paddy fields using the Normalized Difference Drought Index (NDDI) derived from Sentinel-2A satellite imagery. The research was conducted in South Polombangkeng District, Takalar Regency, South Sulawesi, Indonesia, during the dry season in October 2023. The NDDI was calculated by integrating the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Water Index (NDWI). The results indicated that 85.78% of the paddy fields experienced severe drought, while mild and moderate drought covered 9.30% and 4.92%, respectively. NDVI analysis revealed that 87.81% of the area had very low to low vegetation density, and NDWI confirmed extreme moisture deficiency, with 99.88% of the area under very severe drought conditions. The accuracy of the NDDI drought map, validated using the Area Under the Curve (AUC), was 0.62, indicating acceptable model performance. These findings provide critical spatial information for drought mitigation and water management in vulnerable agricultural regions. The study demonstrates the utility of Sentinel-2A and NDDI for localized drought assessment and supports evidence-based decision-making for sustainable farming practices in drought-prone areas.

Boer, R., & Subbiah, A. R. (2005). Agricultural Drought in Indonesia. In Monitoring and Predicting Agricultural Drought: A Global Study (pp. 330–344). Oxford University Press. https://doi.org/10.1093/oso/9780195162349.003.0037 DOI: https://doi.org/10.1093/oso/9780195162349.003.0037

Chou, C. Ben, Weng, M. C., Huang, H. P., Chang, Y. C., Chang, H. C., & Yeh, T. Y. (2022). Monitoring the Spring 2021 Drought Event in Taiwan Using Multiple Satellite-Based Vegetation and Water Indices. Atmosphere, 13(9), 1–15. https://doi.org/10.3390/atmos13091374 DOI: https://doi.org/10.3390/atmos13091374

Dwi Herlambang. (2023). Dampak Lanjutan Kemarau Kering, BMKG Sebut Sektor Ini akan Sangat Terpukul. Biro Hukum Dan Organisasi Bagian Hubungan Masyarakat. https://www.bmkg.go.id/siaran-pers/dampak-lanjutan-kemarau-kering-bmkg-sebut-sektor-ini-akan-sangat-terpukul

FAO. (2017). The State of Food and Agriculture 2017: Leveraging Food Systems for Inclusive Rural Transformation. FAO. https://openknowledge.fao.org/handle/20.500.14283/i7658en

Gao, B. (1996). NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sensing of Environment, 58(3), 257–266. https://doi.org/https://doi.org/10.1016/S0034-4257(96)00067-3 DOI: https://doi.org/10.1016/S0034-4257(96)00067-3

Gu, Y., Brown, J. F., Verdin, J. P., & Wardlow, B. (2007). A Five-year Analysis of MODIS NDVI and NDWI for Grassland Drought Assessment Over The Central Great Plains of The United States. Geophysical Research Letters, 34(6), 1–6. https://doi.org/10.1029/2006GL029127 DOI: https://doi.org/10.1029/2006GL029127

Hastina, H., Olly Sanny Hutabarat, & Daniel Useng. (2023). Investigating the Correlation between Rice Production and RGB Vegetation Index from Drone Imagery and NIR-Based Index from Sentinel Images. Salaga Journal, 01(1), 14–21. https://doi.org/10.70124/salaga.v1i1.1100 DOI: https://doi.org/10.70124/salaga.v1i1.1100

Liku, Y. O. L., Daniel, D., & Sitti, N. F. (2024). Estimating Corn Productivity Using Sentinel-2 Imagery and Spectrometer. Salaga Journal, 2(2), 91–100. https://doi.org/10.70124/salaga.v2i2.1779 DOI: https://doi.org/10.70124/salaga.v2i2.1779

Luqman, A. D., Utami, R., Wiyono, A., & Hidayah, E. (2021). Akurasi pemetaan kekeringan lahan pertanian menggunakan metode Normalized Difference Drought Index (NDDI) di Kecamatan Wuluhan dan Rambipuji Jember. Pertemuan Ilmiah Tahunan HATHI Ke-38, 111–120. https://earthexplorer.usgs.gov/

Mladenova, I. E., Bolten, J. D., Crow, W., Sazib, N., & Reynolds, C. (2020). Agricultural Drought Monitoring via the Assimilation of SMAP Soil Moisture Retrievals Into a Global Soil Water Balance Model. Frontiers in Big Data, 3. https://doi.org/10.3389/fdata.2020.00010 DOI: https://doi.org/10.3389/fdata.2020.00010

Phan, T. N., & Kappas, M. (2018). Application of MODIS Land Surface Temperature Data: A Systematic Literature Review and Analysis. Journal of Applied Remote Sensing, 12(4), 041501. https://doi.org/10.1117/1.JRS.12.041501 DOI: https://doi.org/10.1117/1.JRS.12.041501

Pramesto, V., Sukmono, A., & Suprayogi, A. (2019). Analisis perbandingan metode NDDI dan TVx dalam menentukan kekeringan lahan sawah (Studi kasus: Kabupaten Kendal). Jurnal Geodesi Undip Januari, 8(1), 318–327. http://earthexplorer.usgs.gov/

Rouse Jr, J. W., Haas, R. H., Schell, J. A., Deering, D. W., & Harlan, J. C. (1974). Monitoring The Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. https://skclivinglandscapes.org/remote_sensing/resources/Section6Resources/Rouse_et_al.1974NDVI.pdf

Salas-Martínez, F., Valdés-Rodríguez, O. A., Palacios-Wassenaar, O. M., Márquez-Grajales, A., & Rodríguez-Hernández, L. D. (2023). Methodological estimation to quantify drought intensity based on the NDDI index with Landsat 8 multispectral images in the central zone of the Gulf of Mexico. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1027483 DOI: https://doi.org/10.3389/feart.2023.1027483

Soni, A. K., Tripathi, J. N., Ghosh, K., Sateesh, M., & Singh, P. (2023). Evaluating Crop Water Stress Through Satellite-derived Crop Water Stress Index (CWSI) in Marathwada Region Using Google Earth Engine. Journal of Agrometeorology, 25(4), 539–546. https://doi.org/10.54386/jam.v25i4.2211 DOI: https://doi.org/10.54386/jam.v25i4.2211

Velpuri, N. M., Senay, G. B., & Morisette, J. T. (2016). Evaluating New SMAP Soil Moisture for Drought Monitoring in the Rangelands of the US High Plains. Rangelands, 38(4), 183–190. https://doi.org/https://doi.org/10.1016/j.rala.2016.06.002 DOI: https://doi.org/10.1016/j.rala.2016.06.002

Viswambharan, S., Kumaramkandath, I. T., & Tali, J. A. (2022). A Geospatial Approach in Monitoring The Variations on Surface Soil Moisture and Vegetation Water Content: A Case Study of Palakkad District, Kerala, India. Environmental Earth Sciences, 81(20), 494. https://doi.org/10.1007/s12665-022-10611-6 DOI: https://doi.org/10.1007/s12665-022-10611-6

Wilhite, D. A. (2000). Drought as a Natural Hazard: Concepts and Definitions. In Donald A. Wilhite (Ed.) (Ed.), Drought: A Global Assessment. Routledge. http://digitalcommons.unl.edu/droughtfacpubhttp://digitalcommons.unl.edu/droughtfacpub/69

Nur Rahmi

Faculty of Agricultural Technology, Hasanuddin University, Makassar, Indonesia

Indonesia

Husnul Mubarak husnul.mubarak@unhas.ac.id

Faculty of Agricultural Technology, Hasanuddin University, Makassar, Indonesia

Indonesia

Sitti Nur Faridah

Faculty of Agricultural Technology, Hasanuddin University, Makassar, Indonesia

Indonesia

Muhammad Tahir Sapsal

Faculty of Agricultural Technology, Hasanuddin University, Makassar, Indonesia

Indonesia

Rahmi, N., Mubarak, H., Nur Faridah, S., & Sapsal, M. T. (2025). Drought Level Analysis of Paddy Fields Using the NDDI Method Based on Sentinel-2A Imagery in South Polombangkeng District, Indonesia. Salaga Journal, 3(2), 61–67. https://doi.org/10.70124/salaga.v3i2.2136