Drought Level Analysis of Paddy Fields Using the NDDI Method Based on Sentinel-2A Imagery in South Polombangkeng District, Indonesia
Article Sidebar
Drought is a significant climate-related hazard that severely impacts agricultural productivity, particularly in rainfed paddy fields. This study aimed to analyze the spatial distribution and severity of drought in paddy fields using the Normalized Difference Drought Index (NDDI) derived from Sentinel-2A satellite imagery. The research was conducted in South Polombangkeng District, Takalar Regency, South Sulawesi, Indonesia, during the dry season in October 2023. The NDDI was calculated by integrating the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Water Index (NDWI). The results indicated that 85.78% of the paddy fields experienced severe drought, while mild and moderate drought covered 9.30% and 4.92%, respectively. NDVI analysis revealed that 87.81% of the area had very low to low vegetation density, and NDWI confirmed extreme moisture deficiency, with 99.88% of the area under very severe drought conditions. The accuracy of the NDDI drought map, validated using the Area Under the Curve (AUC), was 0.62, indicating acceptable model performance. These findings provide critical spatial information for drought mitigation and water management in vulnerable agricultural regions. The study demonstrates the utility of Sentinel-2A and NDDI for localized drought assessment and supports evidence-based decision-making for sustainable farming practices in drought-prone areas.
Boer, R., & Subbiah, A. R. (2005). Agricultural Drought in Indonesia. In Monitoring and Predicting Agricultural Drought: A Global Study (pp. 330–344). Oxford University Press. https://doi.org/10.1093/oso/9780195162349.003.0037 DOI: https://doi.org/10.1093/oso/9780195162349.003.0037
Chou, C. Ben, Weng, M. C., Huang, H. P., Chang, Y. C., Chang, H. C., & Yeh, T. Y. (2022). Monitoring the Spring 2021 Drought Event in Taiwan Using Multiple Satellite-Based Vegetation and Water Indices. Atmosphere, 13(9), 1–15. https://doi.org/10.3390/atmos13091374 DOI: https://doi.org/10.3390/atmos13091374
Dwi Herlambang. (2023). Dampak Lanjutan Kemarau Kering, BMKG Sebut Sektor Ini akan Sangat Terpukul. Biro Hukum Dan Organisasi Bagian Hubungan Masyarakat. https://www.bmkg.go.id/siaran-pers/dampak-lanjutan-kemarau-kering-bmkg-sebut-sektor-ini-akan-sangat-terpukul
FAO. (2017). The State of Food and Agriculture 2017: Leveraging Food Systems for Inclusive Rural Transformation. FAO. https://openknowledge.fao.org/handle/20.500.14283/i7658en
Gao, B. (1996). NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sensing of Environment, 58(3), 257–266. https://doi.org/https://doi.org/10.1016/S0034-4257(96)00067-3 DOI: https://doi.org/10.1016/S0034-4257(96)00067-3
Gu, Y., Brown, J. F., Verdin, J. P., & Wardlow, B. (2007). A Five-year Analysis of MODIS NDVI and NDWI for Grassland Drought Assessment Over The Central Great Plains of The United States. Geophysical Research Letters, 34(6), 1–6. https://doi.org/10.1029/2006GL029127 DOI: https://doi.org/10.1029/2006GL029127
Hastina, H., Olly Sanny Hutabarat, & Daniel Useng. (2023). Investigating the Correlation between Rice Production and RGB Vegetation Index from Drone Imagery and NIR-Based Index from Sentinel Images. Salaga Journal, 01(1), 14–21. https://doi.org/10.70124/salaga.v1i1.1100 DOI: https://doi.org/10.70124/salaga.v1i1.1100
Liku, Y. O. L., Daniel, D., & Sitti, N. F. (2024). Estimating Corn Productivity Using Sentinel-2 Imagery and Spectrometer. Salaga Journal, 2(2), 91–100. https://doi.org/10.70124/salaga.v2i2.1779 DOI: https://doi.org/10.70124/salaga.v2i2.1779
Luqman, A. D., Utami, R., Wiyono, A., & Hidayah, E. (2021). Akurasi pemetaan kekeringan lahan pertanian menggunakan metode Normalized Difference Drought Index (NDDI) di Kecamatan Wuluhan dan Rambipuji Jember. Pertemuan Ilmiah Tahunan HATHI Ke-38, 111–120. https://earthexplorer.usgs.gov/
Mladenova, I. E., Bolten, J. D., Crow, W., Sazib, N., & Reynolds, C. (2020). Agricultural Drought Monitoring via the Assimilation of SMAP Soil Moisture Retrievals Into a Global Soil Water Balance Model. Frontiers in Big Data, 3. https://doi.org/10.3389/fdata.2020.00010 DOI: https://doi.org/10.3389/fdata.2020.00010
Phan, T. N., & Kappas, M. (2018). Application of MODIS Land Surface Temperature Data: A Systematic Literature Review and Analysis. Journal of Applied Remote Sensing, 12(4), 041501. https://doi.org/10.1117/1.JRS.12.041501 DOI: https://doi.org/10.1117/1.JRS.12.041501
Pramesto, V., Sukmono, A., & Suprayogi, A. (2019). Analisis perbandingan metode NDDI dan TVx dalam menentukan kekeringan lahan sawah (Studi kasus: Kabupaten Kendal). Jurnal Geodesi Undip Januari, 8(1), 318–327. http://earthexplorer.usgs.gov/
Rouse Jr, J. W., Haas, R. H., Schell, J. A., Deering, D. W., & Harlan, J. C. (1974). Monitoring The Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. https://skclivinglandscapes.org/remote_sensing/resources/Section6Resources/Rouse_et_al.1974NDVI.pdf
Salas-Martínez, F., Valdés-Rodríguez, O. A., Palacios-Wassenaar, O. M., Márquez-Grajales, A., & Rodríguez-Hernández, L. D. (2023). Methodological estimation to quantify drought intensity based on the NDDI index with Landsat 8 multispectral images in the central zone of the Gulf of Mexico. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1027483 DOI: https://doi.org/10.3389/feart.2023.1027483
Soni, A. K., Tripathi, J. N., Ghosh, K., Sateesh, M., & Singh, P. (2023). Evaluating Crop Water Stress Through Satellite-derived Crop Water Stress Index (CWSI) in Marathwada Region Using Google Earth Engine. Journal of Agrometeorology, 25(4), 539–546. https://doi.org/10.54386/jam.v25i4.2211 DOI: https://doi.org/10.54386/jam.v25i4.2211
Velpuri, N. M., Senay, G. B., & Morisette, J. T. (2016). Evaluating New SMAP Soil Moisture for Drought Monitoring in the Rangelands of the US High Plains. Rangelands, 38(4), 183–190. https://doi.org/https://doi.org/10.1016/j.rala.2016.06.002 DOI: https://doi.org/10.1016/j.rala.2016.06.002
Viswambharan, S., Kumaramkandath, I. T., & Tali, J. A. (2022). A Geospatial Approach in Monitoring The Variations on Surface Soil Moisture and Vegetation Water Content: A Case Study of Palakkad District, Kerala, India. Environmental Earth Sciences, 81(20), 494. https://doi.org/10.1007/s12665-022-10611-6 DOI: https://doi.org/10.1007/s12665-022-10611-6
Wilhite, D. A. (2000). Drought as a Natural Hazard: Concepts and Definitions. In Donald A. Wilhite (Ed.) (Ed.), Drought: A Global Assessment. Routledge. http://digitalcommons.unl.edu/droughtfacpubhttp://digitalcommons.unl.edu/droughtfacpub/69
Nur Rahmi
Faculty of Agricultural Technology, Hasanuddin University, Makassar, Indonesia
Indonesia
Husnul Mubarak husnul.mubarak@unhas.ac.id
Faculty of Agricultural Technology, Hasanuddin University, Makassar, Indonesia
Indonesia
Sitti Nur Faridah
Faculty of Agricultural Technology, Hasanuddin University, Makassar, Indonesia
Indonesia
Muhammad Tahir Sapsal
Faculty of Agricultural Technology, Hasanuddin University, Makassar, Indonesia
Indonesia
Copyright (c) 2025 Nur Rahmi, Husnul Mubarak, Sitti Nur Faridah, Muhammad Tahir Sapsal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.