Quality Analysis of Biobriquette from Carbonized Bamboo Waste with Cassava Flour and Dry Rice Adhesive

##plugins.themes.academic_pro.article.main##

Ropiudin Ropiudin
Kavadya Syska

Abstract

The heavy dependence on fossil fuel sources has led to massive exploitation of fossil fuel sources, so it is feared that fossil fuels will run out quickly because they cannot be renewed. It is necessary to find alternative non-fossil fuels so as not to depend on these fuels. Utilization of agricultural waste or industrial waste is an alternative to fossil fuels by turning them into charcoal briquettes. Bamboo waste is included in the category of agricultural waste which is often found in the products of the bamboo industry. This bamboo waste has not been utilized and has the potential to be used to make charcoal briquettes. This study aims to determine the characteristics of waste bamboo charcoal briquettes, determine the effect of the type of adhesive and the percentage of adhesive in the manufacture of waste bamboo charcoal briquettes and determine the right combination of adhesive types and the percentage of adhesive suitable for waste bamboo charcoal briquettes. This study used a Completely Randomized Design (CRD) with a combination of 6 experimental variations. Replications were carried out 4 times to obtain 24 experimental units. The treatment factors used in this study were the type of adhesive (J) and the percentage of adhesive (P). The adhesive type factor (J) consisted of the type of cassava flour adhesive (J0) and rice aking flour (J1) while the adhesive percentage factor consisted of 5% adhesive percentage (P0), 7% adhesive percentage (P1) and 9% adhesive percentage (P2). ). The variables observed in this study included moisture content, ash content, volatile matter, fixed carbon, calorific value, density and compressive strength. The data obtained was analyzed using the F test and if it had a significant effect then it was continued with the 5% DMRT test to find out the difference in these factors. The results showed the characteristics of bamboo charcoal briquettes using cassava flour and aking rice flour adhesive, namely water content (5.07-5.16%), ash content (2.74-2.86%), volatile matter (1.17- 1.25%), fixed carbon (90.74-91.02%), calorific value (6078.40-7348.23 cal/g), density (0.45-0.53 g/cm3) and compressive strength (2.32-6.74 kg/cm2). The type of adhesive and the percentage of adhesive have a significant effect on ash content, volatile matter and fixed carbon and compressive strength. The best bamboo waste charcoal briquettes are using cassava flour adhesive with an adhesive percentage of 5%.

##plugins.themes.academic_pro.article.details##

How to Cite
Ropiudin, R., & Syska, K. (2023). Quality Analysis of Biobriquette from Carbonized Bamboo Waste with Cassava Flour and Dry Rice Adhesive. Jurnal Agritechno, 16(1), 1–12. https://doi.org/10.70124/at.v16i1.999

References

  1. Abdullah, K. (2002). Biomass Energy Potential and Utilization in Indonesia. Institut Pertanian Bogor. Bogor.
  2. Harlina, A.C., Ropiudin, Ritonga, A.M. (2021). Pengaruh Kadar Perekat Molase dan Lama Pengeringan terhadap Kualitas Biobriket dari Tempurung Kelapa dan Sekam Padi. Journal of Agricultural and Biosystem Engineering Research, 2(2): 19-27.
  3. Departemen Perindustrian dan Perdagangan. (2001). Rencana Pengembangan Industri Anyaman Bambu di Indonesia dengan Sistem Cluster. Direktorat Jenderal dan Industri dan Dagang Kecil Menengah, Departemen Perindustrian dan Perdagangan, Republik Indonesia.
  4. Favan, O., Sudarja, M., dan Budi, N.R., (2010). Pengukuran nilai kalor bahan bakar briket karbonisasi kombinasi cangkang pala (Myristica Fragan Houtt) dan limbah sawit (Elaeis Guenensis). UMY. Yogyakarta.
  5. Hanandito, L. dan S. Willy. (2012). Pembuatan Briket Karbonisasi Tempurung Kelapa dari sisa Bahan Bakar Pengasapan Ikan Kelurahan Bandarharjo Semkarbonisasi. Artikel Ilmiah. Jurusan Teknik Kimia, Fakultas Teknik, Universitas Diponegoro.
  6. Iskandar, N., Nugroho, S., & Feliyana, M.F. (2019). Uji Kualitas Produk Briket Arang Tempurung Kelapa Berdasarkan standar Mutu SNI. Jurnal, 15(2): 103-108.
  7. KESDM. (2021). Outlook Energi Indonesia Tahun 2020. Kementerian Energi dan Sumberdaya Mineral. Jakarta.
  8. Lestari, L., Aripin., Yani., Zainudin., Sukmawati, dan Marliani. (2010). Analisis Kualitas Briket Karbonisasi Tongkol Jagung yang Menggunakan Bahan Perekat Sagu dan Kanji. Jurnal Penelitian Aplikasi Fisika. 6: 93-96.
  9. Listiowati, R.D., Ropiudin, dan Ritonga, A.M. (2022). Karakterisasi Kualitas Biobriket Campuran Tempurung Kelapa dan Sekam Padi dengan Variasi Perekat dan Ukuran Serbuk. Journal of Agricultural and Biosystem Engineering Research, 3(2): 13-26.
  10. Orbani, S.W. (2019). Karakteristik Briket Arang Cangkang Pangi (Pangium Edule Reiwn) dengan Menggunakan Perekat Tepung Tapioka dari Ekstraksi Ampas Ubi Kayu dan Penambahan Getah Pinus. Skripsi. Program Studi Kehutanan, Fakultas Pertanian, Universitas Muhammadiyah Makassar.
  11. Parinduri, L., dan Parinduri, T. (2020). Konversi Biomassa Sebagai Sumber Energi Terbarukan. JET (Journal of Electrical Technology), 5(2): 88-92.
  12. Ropiudin dan Syska, K. (2022). Analisis Kualitas Biobriket Karbonisasi Tempurung Kelapa dan Kulit Singkong dengan Perekat Tepung Singkong. Journal of Agricultural and Biosystem Engineering Research. 3(1): 19-38.
  13. Yani, A.P. (2014). Keanekaragaman Bambu dan Manfaatnya di Desa Tabalagan Bengkulu Tengah. Jurnal Gradien 10(2): 987-991.
  14. Yuliah, Y., Suryaningsih, S., dan Ulfi, K. (2017). Penentuan Kadar Air Hilang dan Volatile Matter pada Biobriket dari Campuran Arang Sekam Padi dan Batok Kelapa. Jurnal Ilmu dan Fisika, 1(1): 51-57.

Most read articles by the same author(s)