Article Sidebar

Published: Dec 28, 2024
Keywords:
Biomass, Vegetation Index, Planting Distance, sentinel-2 imagery
Section: Articles
Yeli Oktaviana Liku Liku  Faculty of Agriculture, Hasanuddin University
Daniel Daniel  Faculty of Agriculture, Hasanuddin University
Nur Faridah Sitti  Faculty of Agriculture, Hasanuddin University
Abstract:

Corn is a staple food for the Indonesian population due to its high carbohydrate content, second only to rice. Estimating corn production before the harvest period is crucial for predicting total production output from a given location. This study aims to develop a production model for corn using Sentinel-2 satellite imagery combined with spectral data from a spectrometer and field measurements. The research involved collecting field data on corn production, downloading Sentinel-2 imagery for the period from December 10, 2022, to February 28, 2023, performing atmospheric correction and image cropping, transforming the data into NDVI and EVI vegetation indices, and analyzing the data using simple linear regression to determine the relationship between the NDVI and EVI indices and corn plant parameters, specifically biomass. The results show a strong correlation between productivity estimates using Sentinel-2 and spectrometer data with field observations. For the Sentinel-2 Vegetation Index, EVI has the highest correlation with productivity at approximately 88%, compared to other vegetation indices at around 80%. For the Spectrometer Vegetation Index, NDVI has the highest correlation at around 83%, while other indices are below 80%. Therefore, Sentinel-2 and spectrometer data can effectively estimate productivity in corn plantations.

Arnanto, A. (2015). Pemanfaatan Transformasi Normalized Difference Vegetation Index(Ndvi) Citra Landsat Tm Untuk Zonasi Vegetasi Di Lereng Merapi Bagian Selatan. Geomedia: Majalah Ilmiah Dan Informasi Kegeografian, 11(2), 155–170. https://doi.org/10.21831/gm.v11i2.3448

Aziz, K. W., Prasetyo, Y., & Sukmono, A. (2018). Analisis Regresi Linier Terhadap Pola Histogram Spektral Algoritma Ndvi, Evi Dan Lswi Untuk Mengestimasi Tingkat Produktivitas Padi (Studi Kasus : Kabupaten Demak, Jawa Tengah). Jurnal Geodesi Undip, 7(1), 172–181.

Diasmara, E., & Sudiana, D. (2007). Analisa indeks vegetasi pada data sensor satelit NOAA-AVHRR dan MODIS = The analysis of vegetation index using NOAA-AVHRR and MODIS satellite data. Universitas Indonesia.

Guardia, F. A. (2011). Characterization of electromagnetic fields in the a SPECT spectrometer and reduction of systematic errors (Issue October).

Irsan, L. M., Murti, S. H., & Widayani, P. (2019). ESTIMASI PRODUKSI JAGUNG (Zea Mays L.) DENGAN MENGGUNAKAN CITRA SENTINEL 2A DI SEBAGIAN WILAYAH KABUPATEN JENEPONTO PROVINSI SULAWESI SELATAN. Jurnal Teknosains, 8(2), 93. https://doi.org/10.22146/teknosains.36885

Noviantoro Prasetyo, N., Sasmito, B., & Prasetyo, Y. (2017). Analisis Perubahan Kerapatan Hutan Menggunakan Metode Ndvi dan Evi Pada Citra Satelit Landsat 8 Tahun 2013 dan 2016 (Area Studi : Kabupaten Semarang). Jurnal Geodesi Undip Juli, 6(3), 21–27.

Rifai, M., Made, U., & Rois, R. (2020). PERTUMBUHAN DAN HASIL TANAMAN JAGUNG (Zea mays L.) PADA BERBAGAI KONSENTRASI POC DAN KOMBINASI DOSIS PUPUK ANORGANIK. Agrotekbis: E-Jurnal Ilmu Pertanian, 8(5), 1070–1078.

Setyaputri, A. F., Ramadhani, D. D., & Kisworo, W. (2023). KAJIAN KENYAMANAN PADA RUANG TERBUKA HIJAU BERDASARKAN THI DI DESA SAWAHAN, KECAMATAN NGEMPLAK, KABUPATEN BOYOLALI Institutions and Local Potential in Supporting MSMEs in the Special Region of Yogyakarta. Nusantara Hasana Journal, 2(8), Page.

Skianis, A. G., Vaiopoulos, D., & Nikolakopoulos, K. (2007). A study of the performance of the MSR vegetation index, using probabilistic and geostatistical methods. Bulletin of the Geological Society of Greece, 40(4), 2048. https://doi.org/10.12681/bgsg.17297

Wulandari, B. A., & Jaelani, L. M. (2019). Identifikasi Fase Pertumbuhan Tanaman Jagung Menggunakan Citra SAR Sentinel-1A (Studi Kasus: Kecamatan Gerung, Lombok Barat, NTB). Jurnal Penginderaan Jauh Indonesia, 1(2), 52–59.

Xie, Y., Sha, Z., & Yu, M. (2008). Remote sensing imagery in vegetation mapping: a review. Journal of Plant Ecology, 1(1), 9–23. https://doi.org/10.1093/jpe/rtm005

Yeli Oktaviana Liku Liku

Faculty of Agriculture, Hasanuddin University

Indonesia

Daniel Daniel daniel.useng@agri.unhas.ac.id

Faculty of Agriculture, Hasanuddin University

Indonesia

Nur Faridah Sitti

Faculty of Agriculture, Hasanuddin University

Indonesia

Liku, Y. O. L., Daniel, D., & Sitti, N. F. (2024). Estimating Corn Productivity Using Sentinel-2 Imagery and Spectrometer. Salaga Journal, 2(2), 91–100. https://doi.org/10.70124/salaga.v2i2.1779